Skip to content

Latest commit

 

History

History
120 lines (92 loc) · 3.13 KB

README.md

File metadata and controls

120 lines (92 loc) · 3.13 KB

earthengine-dask

Prerequisites

Installation

Install using pixi:

pixi add --pypi 'earthengine_dask @ git+https://github.com/VorGeo/earthengine-dask.git'

Install using pip:

pip install git+https://github.com/VorGeo/earthengine-dask.git#egg=earthengine-dask

How to use

Import Python packages

import altair as alt
import ee
from earthengine_dask.core import ClusterGEE
import google.auth
import pandas as pd

Authenticate & Initialize Earth Engine

Get credentials and the GCP project ID, authenticating if necessary.

try:
    credentials, project_id = google.auth.default()
except google.auth.exceptions.DefaultCredentialsError:
    !gcloud auth application-default login
    credentials, project_id = google.auth.default()
try:
    ee.Initialize(credentials=credentials, project=project_id)
except google.auth.exceptions.RefreshError:
    !gcloud auth application-default login
    credentials, project_id = google.auth.default()
ee.Initialize(credentials=credentials, project=project_id)

Start Dask Cluster

Start up a Earth Engine enabled cluster. This may take a few minutes to complete.

cluster = ClusterGEE(
    name='test-class-cluster',
    n_workers=2,
    worker_cpu=8,
    region='us-central1',
)

Retrieve a client for the cluster, and display it.

client = cluster.get_client()
client

Submit Jobs

Test it out by: - Defining a function that can be distributed, - Submitting jobs running the function to workers, - Gathering the results locally, and - Displaying the results

# Get a list of countries to analyze.
country_fc = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017')
country_list = country_fc.aggregate_array('country_na').distinct().sort().getInfo()

# Write a function that can be run by the cluster workers. 
def get_country_stats(country_name):
    country = country_fc.filter(ee.Filter.eq('country_na', country_name))
    elev = ee.ImageCollection("COPERNICUS/DEM/GLO30").select('DEM').mosaic()
    return {
        'country': country_name, 
        'area_km2': country.geometry().area().multiply(1e-6).round().getInfo(), 
        'mean_elev': elev.reduceRegion(reducer=ee.Reducer.mean(),
                                       geometry=country.geometry(),
                                       scale=10000,
                                       ).get('DEM').getInfo(),
    }

# Create and submit jobs among the workers.
submitted_jobs = [
    client.submit(get_country_stats, country, retries=5)
    for country in country_list
]

# Gather up the results and display them.
results = client.gather(submitted_jobs)
df = pd.DataFrame(results)
df

Shut down the cluster

cluster.shutdown()