-
Notifications
You must be signed in to change notification settings - Fork 0
/
qball.py
221 lines (164 loc) · 6.82 KB
/
qball.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
from matplotlib.gridspec import GridSpec
from scipy.integrate import odeint
def qball_maker(w, pos, v, data):
v_x, v_y = v
speed = (v_x**2+v_y**2)**0.5
gamma = 1/(1-speed**2)**0.5
x, y = np.meshgrid(np.linspace(-domain, domain, n), np.linspace(-domain, domain, n))
x0, y0 = pos
# rotating so that qball is travelling in the x direction for lorentz transformation
theta = -np.arctan2(v_y,v_x)
x_rotated = x * np.cos(theta) - y * np.sin(theta)
y_rotated = x * np.sin(theta) + y * np.cos(theta)
x0_rotated = x0 * np.cos(theta) - y0 * np.sin(theta)
y0_rotated = x0 * np.sin(theta) + y0 * np.cos(theta)
gamma_x = (x_rotated-x0_rotated) * gamma
boosted_coords = (gamma_x**2 + (y_rotated-y0_rotated)**2)**0.5
sigma_gamma = np.array([[lag(i, data) for i in row] for row in boosted_coords])
phi_01_boost = sigma_gamma*np.cos(w*gamma*speed*(x_rotated-x0_rotated))
phi_02_boost = sigma_gamma*np.sin(w*gamma*speed*(x_rotated-x0_rotated))
dsdx = np.gradient(sigma_gamma, np.linspace(-domain, domain, n), axis=1)
dsdy = np.gradient(sigma_gamma, np.linspace(-domain, domain, n), axis=0)
dsdu = (dsdx*v_x/speed + dsdy*v_y/speed)/gamma
pi_01_boost = dsdu*np.cos(w*gamma*speed*(x_rotated-x0_rotated))*gamma*speed - w*phi_02_boost*gamma
pi_02_boost = dsdu*np.sin(w*gamma*speed*(x_rotated-x0_rotated))*gamma*speed + w*phi_01_boost*gamma
return phi_01_boost, phi_02_boost, pi_01_boost, pi_02_boost
def lag(x, data):
i = (np.abs(data[:,0] - x)).argmin()
low_i = max(0, i-2)
high_i = min(len(data[:,0]), low_i+4)
if high_i==len(data[:,0]):
low_i = len(data[:,0])-4
xdata = [data[:,0][n] for n in range(low_i, high_i)]
ydata = [data[:,1][n] for n in range(low_i, high_i)]
data_points = len(xdata) # 4 in this case
# main lagrange interpolation function
y = 0
for i in range(data_points):
p = 1
for j in range(data_points):
if i != j:
p = p * (x - xdata[j])/(xdata[i] - xdata[j])
y = y + p * ydata[i]
return y
def ode_solver(s0, bounds):
w_high, w_low = bounds
w = (w_high+w_low)/2
r0 = [s0,0]
r = np.linspace(0, 100, int(1e3))
y_x = odeint(qball_ode, r0, r, (w,))
while abs(w_high-w_low)>1e-15:
inf = 0
for y in y_x[:,0]:
if abs(y) > s0:
w_high = w
inf = 1
break
if inf == 0:
w_low = w
w = (w_high+w_low)/2
y_x = odeint(qball_ode, r0, r, (w,))
print(w)
return exp_fit(w, r, y_x)
def qball_ode(y, r, w):
s = y[0]
u = y[1]
if r == 0:
dydr = [u, (1/2)*((w**2 - 1)*s0-s0**2+B*s0**3)]
else:
dydr = [u, -(1/r)*u-s*(w**2 - 1)-A*s**2 + B*s**3]
return dydr
def exp_fit(w, r, y_x):
start = 0
diff = abs(y_x[:,0][0]-y_x[:,0][1])
fit_threshold = 1e-5
for i in range(len(y_x[:,0])):
new_diff = abs(y_x[:,0][i]-y_x[:,0][i+1])
if abs(y_x[:,0][i])<=fit_threshold and not start:
start = i
if start and new_diff>diff:
end = i-1
break
diff = new_diff
x1 = r[start]
x2 = r[end]
y1 = y_x[:,0][start]
y2 = y_x[:,0][end]
b = (np.log(y2)-np.log(y1))/(x1-x2)
a = y1/(np.exp(-b*x1))
popt = [a,b]
# making and saving the piecewise function for the s0
piecewise_y = np.append(y_x[:,0][:start], exp_func(r[start:], *popt))
return [w, np.transpose([r, piecewise_y])]
def exp_func(x, a, b):
return a * np.exp(-b * x)
params_list = np.loadtxt('params.csv', delimiter=' ', skiprows=1)
if params_list.ndim == 1:
params_list = np.array([params_list])
A, B, domain, n = np.genfromtxt('params.csv', delimiter=' ', skip_footer=len(params_list))
domain = int(domain)
n = int(n)
sigma0_data = {}
phi01_system = np.array([])
phi02_system = np.array([])
pi01_system = np.array([])
pi02_system = np.array([])
for params in params_list:
s0, high_bound, low_bound, pos_x, pos_y, v_x, v_y = params
pos = [pos_x, pos_y]
v = [v_x, v_y]
if s0 not in sigma0_data:
bounds = [high_bound, low_bound]
sigma0_data[s0] = ode_solver(s0, bounds)
w, data = sigma0_data[s0]
phi01_curr_qball, phi02_curr_qball, pi01_curr_qball, pi02_curr_qball = qball_maker(w, pos, v, data)
if phi01_system.size == 0: # first qball
phi01_system = phi01_curr_qball
phi02_system = phi02_curr_qball
pi01_system = pi01_curr_qball
pi02_system = pi02_curr_qball
else:
phi01_system = phi01_system + phi01_curr_qball
phi02_system = phi02_system + phi02_curr_qball
pi01_system = pi01_system + pi01_curr_qball
pi02_system = pi02_system + pi02_curr_qball
x, y = np.meshgrid(np.linspace(-domain, domain, n), np.linspace(-domain, domain, n))
# plotting stuff
fig = plt.figure(figsize = (10, 7))
gs = GridSpec(2, 12)
ax1 = fig.add_subplot(gs[0,0:6], projection ="3d")
surf = ax1.plot_surface(x, y, phi01_system, cmap=cm.magma)
ax1.set_xlabel('x')
ax1.set_ylabel('y')
ax1.set_zlabel(r'$\phi^0_1$')
ax1.set_title(r'$\phi^0_1=\sigma(\gamma x,y) \cos(\omega\gamma vx)$')
ax2 = fig.add_subplot(gs[0,6:12], projection ="3d")
surf2 = ax2.plot_surface(x, y, phi02_system, cmap=cm.magma)
ax2.set_xlabel('x')
ax2.set_ylabel('y')
ax2.set_zlabel(r'$\phi^0_2$')
ax2.set_title(r'$\phi^0_2=\sigma(\gamma x,y) \sin(\omega\gamma vx)$')
ax3 = fig.add_subplot(gs[1,0:6], projection ="3d")
surf3 = ax3.plot_surface(x, y, pi01_system, cmap=cm.viridis)
ax3.set_xlabel('x')
ax3.set_ylabel('y')
ax3.set_zlabel(r'$\pi^0_1$')
ax3.set_title(r'$\pi^0_1=v\gamma \cos(\omega\gamma vx)\frac{\partial\sigma(\gamma x,y)}{\partial x}-\omega\gamma\phi_2$')
ax4 = fig.add_subplot(gs[1,6:12], projection ="3d")
surf4 = ax4.plot_surface(x, y, pi02_system, cmap=cm.viridis)
ax4.set_xlabel('x')
ax4.set_ylabel('y')
ax4.set_zlabel(r'$\pi^0_2$')
ax4.set_title(r'$\pi^0_2=v\gamma \sin(\omega\gamma vx)\frac{\partial\sigma(\gamma x,y)}{\partial x}+\omega\gamma\phi_1$')
fig.colorbar(surf, ax=ax1, shrink=0.5, aspect=5)
fig.colorbar(surf2, ax=ax2, shrink=0.5, aspect=5)
fig.colorbar(surf3, ax=ax3, shrink=0.5, aspect=5)
fig.colorbar(surf4, ax=ax4, shrink=0.5, aspect=5)
# outputting stuff
xys = [x.flatten(), y.flatten(), phi01_system.flatten(), phi02_system.flatten(), pi01_system.flatten(), pi02_system.flatten()]
np.savetxt('initdata_new.csv', np.transpose(xys), delimiter=' ')
fig.tight_layout()
plt.show()