-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
24 lines (20 loc) · 945 Bytes
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import os
import torch
import diffusers
from diffusers.utils import make_image_grid
import torchvision
from PIL import Image
def denoising_process(config,model,scheduler,save_images = True,image_name="sample"):
with torch.no_grad():
image = torch.randn(config.train_batch_size,model.config.in_channels, config.image_size, config.image_size).to("cuda")
for t in scheduler.timesteps:
model_output = model(image,t).sample
image = scheduler.step(model_output,t,image).prev_sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
image_grid = make_image_grid(pil_images, rows=4, cols=4)
test_dir = os.path.join(config.output_dir, "samples")
image_grid.save(f"{test_dir}/{image_name}.png")
return