-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest.py
91 lines (77 loc) · 2.88 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import argparse
import pprint
import pytorch_lightning as pl
from loguru import logger as loguru_logger
from src.config.default import get_cfg_defaults
from src.lightning.data import MultiSceneDataModule
from src.lightning.lightning_adamatcher import PL_AdaMatcher
from src.utils.profiler import build_profiler
def parse_args():
# init a custom parser which will be added into pl.Trainer parser
# check documentation: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-flags
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data_cfg_path', type=str, help='data config path')
parser.add_argument('main_cfg_path', type=str, help='main config path')
parser.add_argument(
'--ckpt_path',
type=str,
default='weights/indoor_ds.ckpt',
help='path to the checkpoint',
)
parser.add_argument(
'--dump_dir',
type=str,
default=None,
help='if set, the matching results will be dump to dump_dir',
)
parser.add_argument(
'--profiler_name',
type=str,
default=None,
help='options: [inference, pytorch], or leave it unset',
)
parser.add_argument('--batch_size',
type=int,
default=1,
help='batch_size per gpu')
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument(
'--thr',
type=float,
default=None,
help='modify the coarse-level matching threshold.',
)
parser = pl.Trainer.add_argparse_args(parser)
return parser.parse_args()
if __name__ == '__main__':
# parse arguments
args = parse_args()
pprint.pprint(vars(args))
# init default-cfg and merge it with the main- and data-cfg
config = get_cfg_defaults()
config.merge_from_file(args.main_cfg_path)
config.merge_from_file(args.data_cfg_path)
pl.seed_everything(config.TRAINER.SEED) # reproducibility
# tune when testing
if args.thr is not None:
config.ADAMATCHER.MATCH_COARSE.THR = args.thr
loguru_logger.info(f'Args and config initialized!')
# lightning module
profiler = build_profiler(args.profiler_name)
model = PL_AdaMatcher(
config,
pretrained_ckpt=args.ckpt_path,
profiler=profiler,
dump_dir=args.dump_dir,
)
loguru_logger.info(f'AdaMatcher-lightning initialized!')
# lightning data
data_module = MultiSceneDataModule(args, config)
loguru_logger.info(f'DataModule initialized!')
# lightning trainer
trainer = pl.Trainer.from_argparse_args(args,
replace_sampler_ddp=False,
logger=False)
loguru_logger.info(f'Start testing!')
trainer.test(model, datamodule=data_module, verbose=False)