-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_regression.R
70 lines (53 loc) · 1.92 KB
/
linear_regression.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#1
shapiro_rain <- shapiro.test(data$rain_mean_annual)
shapiro_temp <- shapiro.test(data$temp_mean_annual)
shapiro_rain
shapiro_temp
plot(data$temp_mean_annual, data$rain_mean_annual,
cex = 3,
pch = 21,
lwd = 0.9,
col = "red",
bg = rgb(1, 0, 0, 0.3),
bty = "n",
las = 1)
abline(h = mean(data$rain_mean_annual),
v = mean(data$temp_mean_annual),
lty = 3)
correlacao_pearson <- cor(data$temp_mean_annual, data$rain_mean_annual, method = "pearson")
correlacao_pearson
correlacao_spearman <- cor(data$temp_mean_annual, data$rain_mean_annual, method = "spearman")
correlacao_spearman
#1.2
par(mfrow = c(1, 2))
plot(data$temp_mean_annual, data$rain_mean_annual,
main = "Pearson",
xlab = "Temperatura Média Anual (°C)",
ylab = "Precipitação Média Anual (mm)",
pch = 19, col = "blue")
abline(lm(data$rain_mean_annual ~ data$temp_mean_annual), col = "red")
plot(data$temp_mean_annual, data$rain_mean_annual,
main = "Spearman",
xlab = "Temperatura Média Anual (°C)",
ylab = "Precipitação Média Anual (mm)",
pch = 19, col = "blue")
lines(lowess(data$temp_mean_annual, data$rain_mean_annual), col = "green")
#2
species_list <- c("Vespadelus_regulus", "Vespadelus_vulturnus",
"Vespadelus_pumilus", "Vespadelus_darlingtoni", "Vespertilio_murinus")
data_vespertilionidae <- bats[bats$Species %in% species_list, ]
modelo <- lm(Log_Range_area ~ Log_Relative_wing_loading, data = data_vespertilionidae)
summary(modelo)
shapiro_test <- shapiro.test(residuals(modelo))
print(shapiro_test)
library(lmtest)
bp_test <- bptest(modelo)
print(bp_test)
par(mfrow = c(2, 2))
plot(modelo)
plot(data_vespertilionidae$Log_Relative_wing_loading, data_vespertilionidae$Log_Range_area,
main = "Log Range Area vs. Log Relative Wing Loading",
xlab = "Log Relative Wing Loading",
ylab = "Log Range Area",
pch = 20)
abline(modelo, col = "red")