-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathfeatures_util.py
500 lines (436 loc) · 17.8 KB
/
features_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# encoding=utf-8
import sys
sys.path.append('..')
import wave
import numpy as np
from matplotlib import pyplot as plt
from pylab import *
import pylab
from scipy import signal
from scipy.io import wavfile
from scipy.stats import mode
import json
import random
import pandas as pd
import scipy.io as scio
import librosa
"""读取信号->分帧->伽马通滤波->"""
def read_wav(file_path):
fs, wav_data = wavfile.read(file_path)
wav_data = np.array(wav_data / (2.**15))
n_channels = wav_data.shape[1]
def find_zero_point(signal):
l = signal.shape[0]
front, back = 0, l-1
for front in range(l):
if signal[front] != 0:
break
for back in range(l-1, -1, -1):
if signal[back] != 0:
break
return front, back
left_signal = None
right_signal = None
if n_channels >= 2:
left_signal = wav_data[:, 0]
right_signal = wav_data[:, 1]
# 去掉信号前后为0的部分,不去除延时的部分
# l_front, l_back = find_zero_point(left_signal)
# r_front, r_back = find_zero_point(right_signal)
# left_signal = left_signal[min([l_front, r_front]):max([l_back, r_back]) + 1]
# right_signal = right_signal[min([l_front, r_front]):max([l_back, r_back]) + 1]
return {
'wav_data': wav_data,
'left_data': left_signal,
'right_data': right_signal,
'fs': fs
}
def enframe(signal, frequency, window_size, shift_step, use_window="hanning", pre_emhance=0.95):
"""
:param signal: input speech
:param frequency: sampling frequency rate
:param window_size: in ms
:param shift_step: in ms
:param use_window: hanning, hamming, kaiser, blackman, None
:param pre_emhance: 预加重
:return: frames array, n_frames*window_size
"""
signal_frame = list()
window_size = int(window_size*frequency/1000)
shift_step = int(shift_step*frequency/1000)
window = None
use_window = use_window.lower()
if use_window == "hanning":
window = np.hanning(window_size)
elif use_window == "hamming":
window = np.hamming(window_size)
elif use_window == "kaiser":
window = np.kaiser(window_size, 0)
elif use_window == "blackman":
window_size = np.kaiser(window_size, 8.6)
elif use_window == "none":
window = np.ones(window_size)
signal_length = len(signal)
if pre_emhance > 0:
i = 1
while i < signal_length:
signal[i] = signal[i] - pre_emhance*signal[i-1]
i += 1
i = 0
while i < signal_length - window_size:
tmp = signal[i:i+window_size]
tmp = tmp*window
signal_frame.append(tmp)
i += shift_step
signal_frame = np.array(signal_frame, dtype='float32')
return signal_frame
def ERBSpace(lowFreq=80, highFreq=16000, N=32):
"""
ERBSpace获得了中心频率f。
:param lowFreq: 最小频率
:param highFreq: 最大频率
:param N: 滤波器通道数
:return: 滤波器族的各个中心频率
"""
earQ = 9.26449
minBW = 24.7
low = float(lowFreq)
high = float(highFreq)
N = float(N)
cf = -(earQ * minBW) + np.exp(
(np.arange(N + 1)[1:]) * (-np.log(high + earQ * minBW) + np.log(low + earQ * minBW)) / (N)) * (
high + earQ * minBW)
cf = cf[::-1] # 沿着通道数对频率从小到大排序,注释掉可反过来
return cf
def MakeERBFilters(fs, numChannels, lowFreq, highFreq):
"""MakeERBFilters函数产生了GT滤波器系数。输入为:采样频率、滤波器通道数、最小频率、最高频率。输出为:n通道GT滤波器系数。"""
fs = float(fs)
T = 1 / fs
if np.isscalar(numChannels):
numChannels = [numChannels]
numChannels = np.array(numChannels)
if numChannels.ndim > 1:
print("is not one dimision data")
return 0
if numChannels.size == 1:
cf = ERBSpace(lowFreq, highFreq, numChannels[0])
else:
cf = numChannels
EarQ = 9.26449 # Glasberg and Moore Parameters
minBW = 24.7
order = 1.0
ERB = ((cf / EarQ) ** order + minBW ** order) ** (1 / order)
B = 1.019 * 2.0 * np.pi * ERB
arg = 2 * cf * np.pi * T
vec = np.exp(2j * arg)
A0 = T
A2 = 0.0
B0 = 1.0
B1 = -2 * np.cos(arg) / np.exp(B * T)
B2 = np.exp(-2.0 * B * T)
rt_pos = np.sqrt(3 + 2 ** 1.5)
rt_neg = np.sqrt(3 - 2 ** 1.5)
common = -T * np.exp(-(B * T))
k11 = np.cos(arg) + rt_pos * np.sin(arg)
k12 = np.cos(arg) - rt_pos * np.sin(arg)
k13 = np.cos(arg) + rt_neg * np.sin(arg)
k14 = np.cos(arg) - rt_neg * np.sin(arg)
A11 = common * k11
A12 = common * k12
A13 = common * k13
A14 = common * k14
gain_arg = np.exp(1j * arg - B * T)
gain = np.abs(
(vec - gain_arg * k11)
* (vec - gain_arg * k12)
* (vec - gain_arg * k13)
* (vec - gain_arg * k14)
* (T * np.exp(B * T)
/ (-1 / np.exp(B * T) + 1 + vec * (1 - np.exp(B * T)))
) ** 4
)
allfilts = np.ones_like(cf)
fcoefs = np.column_stack([
A0 * allfilts, A11, A12, A13, A14, A2 * allfilts,
B0 * allfilts, B1, B2,
gain
])
return fcoefs, cf
def ERBFilterBank(x, fcoefs):
"""
Gammatone滤波器被广泛用于模拟人类听觉系统对信号的处理方式,作为语音信号的一类听觉分析滤波器(以下简称为GT滤波器)。
GT滤波器只需要很少的参数就能很好地模拟听觉实验中的生理数据,能够体现基底膜尖锐的滤波特性,
而且 GT滤波器具有简单的冲激响应函数,能够由此推导出GT函数的传递函数,进行各种滤波器性能分析,同时有利于听觉模型的电路实现。
GT滤波器的冲击响应函数定义如下:
g(t)=a*t^(n-1)*cos(a*pi*f*t+fy)*e^(-2*pi*b*t)
这里n为滤波器阶数,b为滤波器的带宽,f为滤波器的中心频率,a是振幅。
a=B**n, B=b1ERB(f)
ERB(f)为GT滤波器的等价矩形带宽(等价矩形带宽:对于同样的白噪声输入,和指定的滤波器通过一样能量的矩形滤波器的宽度,简称ERB),
它同GT滤波器中心频率f,的关系是
ERB(f)=24.7+0.108f
b1=1.019是为了让GT函数更好地与生理数据相符而引入的参数。
ERBFilterBank 函数输入分别为:原始数据和GT滤波器系数。输出为滤波后的数据。该函数实现对原始数据的时域GT滤波。
"""
A0 = fcoefs[:, 0]
A11 = fcoefs[:, 1]
A12 = fcoefs[:, 2]
A13 = fcoefs[:, 3]
A14 = fcoefs[:, 4]
A2 = fcoefs[:, 5]
B0 = fcoefs[:, 6]
B1 = fcoefs[:, 7]
B2 = fcoefs[:, 8]
gain = fcoefs[:, 9]
output = np.zeros((gain.size, x.size), dtype=np.float64)
for chan in range(gain.size):
y1 = signal.lfilter(np.array([A0[chan] / gain[chan], A11[chan] / gain[chan], A2[chan] / gain[chan]]),
np.array([B0[chan], B1[chan], B2[chan]]), x)
y2 = signal.lfilter(np.array([A0[chan], A12[chan], A2[chan]]), np.array([B0[chan], B1[chan], B2[chan]]), y1)
y3 = signal.lfilter(np.array([A0[chan], A13[chan], A2[chan]]), np.array([B0[chan], B1[chan], B2[chan]]), y2)
y4 = signal.lfilter(np.array([A0[chan], A14[chan], A2[chan]]), np.array([B0[chan], B1[chan], B2[chan]]), y3)
output[chan, :] = y4
return output
def STFT(signal, n_point):
"""
语谱图
短时傅里叶变换,利用离散傅里叶变换,信号长度不足n_point的进行补零
:param signal: every frame
:param n_point:
:return: stft
"""
spec_list = list()
for item in signal:
spec = np.fft.fft(item, n=n_point)
spec_list.append(spec)
# 如果是功率谱密度,傅里叶变换后的abs值再除以点数
spec_list = np.array(spec_list, dtype='float32')
return spec_list
def crossCorrelation(x1, x2):
"""
互相关函数,求两个信号的互相关值
:param x1:
:param x2:
:return:
"""
n_point = 2*x1.shape[0]-1
X = np.fft.fft(x1, n_point)
Y = np.fft.fft(x2, n_point)
XY = X * np.conj(Y)
# 归一化
# pl = np.sum(np.square(x1))
# pr = np.sum(np.square(x2))
# c = XY / (np.sqrt(pl * pr) + 2.2204e-16)
# GCC-PHAT
c = XY / (abs(X)*abs(Y)+2.2204e-16)
c = np.real(np.fft.ifft(c))
end = len(c)
center_point = int(end/2)
c = np.hstack((c[center_point+1:], c[:center_point+1]))
lag = np.argmax(abs(c)) - len(x1) + 1 # 返回最大值所对应的下标,如果换算成时间:lag*1000/fs
# test
# c, m = cross_correlation(wav_info['right_data'], wav_info['left_data'])
# print(m * 1000 / wav_info['fs'])
return c, lag
def ILD(x1, x2):
"""
计算两个信号的能量差, interaural level differences
20log10(sum(power(left))/sum(power(right)))
:param x1:
:param x2:
:return:
"""
fl = np.sum(np.square(x1))
fr = np.sum(np.square(x2))
if fl != 0 and fr != 0:
return 20 * np.log10(fr / fl)
elif fl == 0 and fr != 0:
return 10000
elif fr == 0 and fl != 0:
return -10000
else:
return 0
def crossSpectrum(x1, x2, fs):
"""
对两个信号计算互相关时延谱图,其中,信号都为分帧分频带后的矩阵, x1:left, x2:right
:param x1:
:param x2:
:param fs:
:return:
"""
if x1.shape != x2.shape:
return None
frequency_bands = x1.shape[1]
frames = x1.shape[0]
res = []
for i in range(frames):
tmp = []
for j in range(frequency_bands):
c, m = crossCorrelation(x2[i][j], x1[i][j])
itd = m * 1000 / fs
tmp.append(itd)
res.append(tmp)
res = np.array(res)
return res
# 常用音频特征
def zero_cross_ratio(frames):
"""
Zn = 1/2*sum_(m=0~(N-1))(sgn[Xn(m)]-sgn[Xn(m-1)])
N 是一帧的长度,n为对应的帧数,按帧处理
理论分析:过零率体现的是信号过零点的次数,体现是频率特性,因为需要过零点,
所以信号处理之前需要中心化处理
:param frames: 分帧后的信号
:return: 每一帧的过零率
"""
n_frames = frames.shape[0]
res = np.zeros(n_frames)
wlen = frames.shape[1]
for i in range(n_frames):
for j in range(wlen-1):
if frames[i][j]*frames[i][j+1] < 0:
res[i] += 1
return res
def short_time_energy(frames_signal):
"""
短时能量, En = sum_(m=0~N-1)(Xn^2(m))
短时能量体现的是信号在不同时刻的强弱程度
:param frames_signal:
:return:
"""
n_frames = frames_signal.shape[0]
res = np.zeros(n_frames)
for i in range(n_frames):
res[i] = np.sum(frames_signal[i]*frames_signal[i])
return res
def short_time_average_amplitude(frames_signal):
"""
短时平均幅度差, Rn(k)=sum_(m=0~N-1)(x(n)-x(n+k))
音频具有周期性,平稳噪声情况下利用短时平均幅度差可以更好地观察周期特性
:param frames_signal:
:return:
"""
n_frame = frames_signal.shape[0]
wlen = frames_signal.shape[1]
res = np.zeros((n_frame, wlen))
for i in range(n_frame):
for j in range(wlen):
res[i][j] = np.sum(abs(frames_signal[i][j:]-frames_signal[i][:wlen-j])) # 求每个样点的幅度差再累加
return res
def spectrum_entropy(frames_fft):
"""
谱熵的定义,首先对每一帧信号的频谱绝对值归一化
Pi=(Ym(fi))/(sum_(k=0~N-1)(Ym(fk)))
这样就得到了概率密度,进而求取熵
Hm=-sum_(i=0~N-1)(P(i)log(P(i))
分析:熵体现的是不确定性,例如抛骰子一无所知,每一面的概率都是1/6,信息量最大,也就是熵最大。
如果知道商家做了手脚,抛出3的概率大,这个时候我们已经有一定的信息量,抛骰子本身的信息量就少了,熵也就变小。
对于信号,如果是白噪声,频谱类似均匀分布,熵就大一些;如果是语音信号,分布不均匀,熵就小一些,
利用这个性质也可以得到一个粗糙的VAD(有话帧检测)。
谱熵有许多的改进思路,滤波取特定频段、设定概率密度上限、子带平滑谱熵,自带平滑通常利用拉格朗日平滑因子,
这是因为防止某一段子带没有信号,这个时候的概率密度就没有意义了,这个思路在利用统计信息估计概率密度时经常用到,
比如朴素贝叶斯就用到这个思路。
:param frames_fft: 分帧后每一帧的傅里叶变换
:return:
"""
n_frames = frames_fft.shape[0]
wlen = frames_fft.shape[1]
H = np.zeros(n_frames)
for i in range(n_frames):
Sp = np.abs(frames_fft[i])
Sp = Sp[:int(wlen/2)+1]
Ep = Sp*Sp
prob = Ep/(np.sum(Ep))
H[i] = -np.sum(prob*np.log(prob+2.2204e-16))
return H
def basic_frequency(signal, fs):
"""
基频:也就是基频周期。人在发音时,声带振动产生浊音(voiced),没有声带振动产生清音(Unvoiced)。
浊音的发音过程是:来自肺部的气流冲击声门,造成声门的一张一合,形成一系列准周期的气流脉冲,
经过声道(含口腔、鼻腔)的谐振及唇齿的辐射形成最终的语音信号。故浊音波形呈现一定的准周期性。
所谓基音周期,就是对这种准周期而言的,它反映了声门相邻两次开闭之间的时间间隔或开闭的频率。
基音提取常用的方法有:倒谱法、短时自相关法、短时平均幅度差法、LPC法
自相关函数:
Rn(k)=sum_(m=0~N-1-k)([x(n+m)w'(m)][x(n+m+k)w'(k+m)])
归一化处理,因为R(0)最大
Rn(k)=Rn(k)/Rn(0)
得到归一化相关函数的时候,归一化的相关函数第一个峰值为k=0,第二个峰值理论上应该对应基频的位置,
因为自相关函数对称,通常取一半分析即可
:return:
"""
wlen = len(signal)
r, lag = crossCorrelation(signal, signal)
r = r / np.max(r)
rhalf = r[wlen:] # 取延迟量为正值的部分
# 提取基音,假设介于50~600Hz之间
lmin = np.round((50 / fs) * wlen)
lmax = np.round((600 / fs) * wlen)
tloc = np.argmax(rhalf[int(lmin):int(lmax)])
pos = lmin + tloc - 1
pitch = pos / wlen * fs
return pitch
def mfcc(signal, fs):
"""
梅尔倒谱系数
:param signal:
:param fs:
:return:
"""
S = librosa.feature.melspectrogram(y=signal, sr=fs, n_mels=320, fmax=8000, hop_length=320)
res_mfcc = librosa.feature.mfcc(S=librosa.power_to_db(S))
# res_mfcc = librosa.feature.mfcc(y=signal, sr=fs, n_mfcc=40)
return res_mfcc
def test_spectrum_entropy():
a=[-104.9486, -104.6963, -104.9053, -105.1850, -104.9786, -104.6889, -104.8497, -105.1547, -104.9943, -104.6741]
a = np.array(a)
a = [np.fft.fft(a)]
a = np.array(a)
print(a.shape)
print(a)
H = spectrum_entropy(a)
print(H)
def test_basic_frequency(data_path):
wav_info = read_wav(data_path)
signal = wav_info['left_data'][16000:(16000 + 320)]
pitch = basic_frequency(signal, wav_info['fs'])
print(pitch)
def test_cross_spectrum(wav_path):
wav_info = read_wav(wav_path)
left_frame = enframe(wav_info['left_data'], wav_info['fs'], 20, 10, "hanning", 0.98)
right_frame = enframe(wav_info['right_data'], wav_info['fs'], 20, 10, "hanning", 0.98)
c, m = crossCorrelation(wav_info['right_data'], wav_info['left_data'])
print("两个信号时延", m * 1000 / wav_info['fs'], "ms")
zcr = zero_cross_ratio(np.array(left_frame))
print("过零率", zcr.shape)
ste = short_time_energy(left_frame)
print("短时能量", ste.shape)
saa = short_time_average_amplitude(left_frame)
print("短时平均幅度差", saa.shape)
stft = STFT(left_frame, None)
scio.savemat("stft.mat", {'stft': stft})
print("短时傅里叶变换(语谱图)", stft.shape)
res_mfcc = mfcc(wav_info['left_data'], wav_info['fs'])
print("mfcc", res_mfcc.shape)
fcoefs, center_freq = MakeERBFilters(wav_info['fs'], 32, 80, 8000)
print("伽马通滤波器系数大小", fcoefs.shape)
left_signal_filtering = []
right_signal_filtering = []
frames = len(left_frame)
for i in range(frames):
cfs = ERBFilterBank(left_frame[i], fcoefs)
left_signal_filtering.append(cfs)
cfs = ERBFilterBank(right_frame[i], fcoefs)
right_signal_filtering.append(cfs)
left_signal_filtering = np.array(left_signal_filtering)
right_signal_filtering = np.array(right_signal_filtering)
print("通过伽马通滤波器后左右信号的大小", left_signal_filtering.shape, right_signal_filtering.shape)
cross_spec = crossSpectrum(left_signal_filtering, right_signal_filtering, wav_info['fs'])
print("交叉互相关谱的大小", cross_spec.shape)
scio.savemat("cross_spec.mat", {'d30': cross_spec.T})
if __name__ == '__main__':
data_path = 'E:\pku\papers\experiments\SSL\data\SSL_expriment_data//test_2s.wav'
d300 = 'E:\pku\papers\experiments\SSL\data\SSL_expriment_data\without_noise\\test\QU_KEMAR_anechoic_AKGK271_0.5m' \
'\dr5\\fgmd0\sx413_300.wav'
d30 = 'E:\pku\papers\experiments\SSL\data\SSL_expriment_data\without_noise\\test\QU_KEMAR_anechoic_AKGK271_0.5m' \
'\dr5\\fasw0\sa2_30.wav'
test_cross_spectrum(d300)
# test_basic_frequency(data_path)
# librosa.feature.zero_crossing_rate()