forked from ucfnlp/multidoc_summarization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
213 lines (154 loc) · 6.8 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Modifications Copyright 2017 Abigail See
# Modifications made 2018 by Logan Lebanoff
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This file contains some utility functions"""
import tensorflow as tf
import time
import os
import numpy as np
from absl import flags
import itertools
import data
from absl import logging
from sumy.nlp.tokenizers import Tokenizer
FLAGS = flags.FLAGS
def get_config():
"""Returns config for tf.session"""
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth=True
return config
def load_ckpt(saver, sess, ckpt_dir="train"):
"""Load checkpoint from the ckpt_dir (if unspecified, this is train dir) and restore it to saver and sess, waiting 10 secs in the case of failure. Also returns checkpoint name."""
while True:
try:
latest_filename = "checkpoint_best" if ckpt_dir=="eval" else None
ckpt_dir = os.path.join(FLAGS.pretrained_path, 'train')
ckpt_state = tf.train.get_checkpoint_state(ckpt_dir, latest_filename=latest_filename)
logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
saver.restore(sess, ckpt_state.model_checkpoint_path)
return ckpt_state.model_checkpoint_path
except:
logging.info("Failed to load checkpoint from %s. Sleeping for %i secs...", ckpt_dir, 10)
time.sleep(10)
def flatten_list_of_lists(list_of_lists):
return list(itertools.chain.from_iterable(list_of_lists))
def chunks(chunkable, n):
""" Yield successive n-sized chunks from l.
"""
chunk_list = []
for i in xrange(0, len(chunkable), n):
chunk_list.append( chunkable[i:i+n])
return chunk_list
def is_list_type(obj):
return isinstance(obj, (list, tuple, np.ndarray))
def remove_period_ids(lst, vocab):
if len(lst) == 0:
return lst
if is_list_type(lst[0]):
return [[item for item in inner_list if item != vocab.word2id(data.PERIOD)] for inner_list in lst]
else:
return [item for item in lst if item != vocab.word2id(data.PERIOD)]
def to_unicode(text):
try:
text = unicode(text, errors='replace')
except TypeError:
return text
return text
def special_squash(distribution):
res = distribution - np.min(distribution)
if np.max(res) == 0:
print('All elements in distribution are 0, so setting all to 0')
res.fill(0)
else:
res = res / np.max(res)
return res
def my_lcs(string, sub):
"""
Calculates longest common subsequence for a pair of tokenized strings
:param string : list of str : tokens from a string split using whitespace
:param sub : list of str : shorter string, also split using whitespace
:returns: length (list of int): length of the longest common subsequence between the two strings
Note: my_lcs only gives length of the longest common subsequence, not the actual LCS
"""
if (len(string) < len(sub)):
sub, string = string, sub
lengths = [[0 for i in range(0, len(sub) + 1)] for j in range(0, len(string) + 1)]
for j in range(1, len(sub) + 1):
for i in range(1, len(string) + 1):
if (string[i - 1] == sub[j - 1]):
lengths[i][j] = lengths[i - 1][j - 1] + 1
else:
lengths[i][j] = max(lengths[i - 1][j], lengths[i][j - 1])
return lengths[len(string)][len(sub)]
def calc_ROUGE_L_score(candidate, reference, metric='f1'):
"""
Compute ROUGE-L score given one candidate and references for an image
:param candidate: str : candidate sentence to be evaluated
:param refs: list of str : COCO reference sentences for the particular image to be evaluated
:returns score: int (ROUGE-L score for the candidate evaluated against references)
"""
beta = 1.2
prec = []
rec = []
if len(reference) == 0:
return 0.
if type(reference[0]) is not list:
reference = [reference]
for ref in reference:
# compute the longest common subsequence
lcs = my_lcs(ref, candidate)
prec.append(lcs / float(len(candidate)))
rec.append(lcs / float(len(ref)))
prec_max = max(prec)
rec_max = max(rec)
if metric == 'f1':
if (prec_max != 0 and rec_max != 0):
score = ((1 + beta ** 2) * prec_max * rec_max) / float(rec_max + beta ** 2 * prec_max)
else:
score = 0.0
elif metric == 'precision':
score = prec_max
elif metric == 'recall':
score = rec_max
else:
raise Exception('Invalid metric argument: %s. Must be one of {f1,precision,recall}.' % metric)
return score
'''
Functions for computing sentence similarity between a set of source sentences and a set of summary sentences
'''
def get_similarity(enc_tokens, summ_tokens, vocab):
metric = 'precision'
summ_tokens_combined = flatten_list_of_lists(summ_tokens)
importances_hat = rouge_l_similarity(enc_tokens, summ_tokens_combined, vocab, metric=metric)
return importances_hat
def rouge_l_similarity(article_sents, abstract_sents, vocab, metric='f1'):
sentence_similarity = np.zeros([len(article_sents)], dtype=float)
abstract_sents_removed_periods = remove_period_ids(abstract_sents, vocab)
for article_sent_idx, article_sent in enumerate(article_sents):
rouge_l = calc_ROUGE_L_score(article_sent, abstract_sents_removed_periods, metric=metric)
sentence_similarity[article_sent_idx] = rouge_l
return sentence_similarity
def rouge_l_similarity_matrix(article_sents, abstract_sents, vocab, metric='f1'):
sentence_similarity_matrix = np.zeros([len(article_sents), len(abstract_sents)], dtype=float)
abstract_sents_removed_periods = remove_period_ids(abstract_sents, vocab)
for article_sent_idx, article_sent in enumerate(article_sents):
abs_similarities = []
for abstract_sent_idx, abstract_sent in enumerate(abstract_sents_removed_periods):
rouge_l = calc_ROUGE_L_score(article_sent, abstract_sent, metric=metric)
abs_similarities.append(rouge_l)
sentence_similarity_matrix[article_sent_idx, abstract_sent_idx] = rouge_l
return sentence_similarity_matrix
tokenizer = Tokenizer('english')