forked from ucfnlp/multidoc_summarization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
505 lines (409 loc) · 27.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Modifications Copyright 2017 Abigail See
# Modifications made 2018 by Logan Lebanoff
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This file contains code to build and run the tensorflow graph for the sequence-to-sequence model"""
import os
import time
import numpy as np
import tensorflow as tf
from attention_decoder import attention_decoder
from tensorflow.contrib.tensorboard.plugins import projector
from absl import flags
from absl import logging
FLAGS = flags.FLAGS
class SummarizationModel(object):
"""A class to represent a sequence-to-sequence model for text summarization. Supports both baseline mode, pointer-generator mode, and coverage"""
def __init__(self, hps, vocab):
self._hps = hps
self._vocab = vocab
def _add_placeholders(self):
"""Add placeholders to the graph. These are entry points for any input data."""
hps = self._hps
# encoder part
self._enc_batch = tf.placeholder(tf.int32, [hps.batch_size, None], name='enc_batch')
self._enc_lens = tf.placeholder(tf.int32, [hps.batch_size], name='enc_lens')
self._enc_padding_mask = tf.placeholder(tf.float32, [hps.batch_size, None], name='enc_padding_mask')
if FLAGS.pointer_gen:
self._enc_batch_extend_vocab = tf.placeholder(tf.int32, [hps.batch_size, None], name='enc_batch_extend_vocab')
self._max_art_oovs = tf.placeholder(tf.int32, [], name='max_art_oovs')
# decoder part
self._dec_batch = tf.placeholder(tf.int32, [hps.batch_size, hps.max_dec_steps], name='dec_batch')
self._target_batch = tf.placeholder(tf.int32, [hps.batch_size, hps.max_dec_steps], name='target_batch')
self._dec_padding_mask = tf.placeholder(tf.float32, [hps.batch_size, hps.max_dec_steps], name='dec_padding_mask')
if hps.mode=="decode" and hps.coverage:
self.prev_coverage = tf.placeholder(tf.float32, [hps.batch_size, None], name='prev_coverage')
self.token_inputs = tf.placeholder(tf.int32, [hps.batch_size, None], name='token_inputs')
if FLAGS.pg_mmr:
self.mmr_score = tf.placeholder(tf.float32, [hps.batch_size, None], name='mmr_score')
def _make_feed_dict(self, batch, just_enc=False):
"""Make a feed dictionary mapping parts of the batch to the appropriate placeholders.
Args:
batch: Batch object
just_enc: Boolean. If True, only feed the parts needed for the encoder.
"""
feed_dict = {}
feed_dict[self._enc_batch] = batch.enc_batch
feed_dict[self._enc_lens] = batch.enc_lens
feed_dict[self._enc_padding_mask] = batch.enc_padding_mask
if FLAGS.pointer_gen:
feed_dict[self._enc_batch_extend_vocab] = batch.enc_batch_extend_vocab
feed_dict[self._max_art_oovs] = batch.max_art_oovs
if not just_enc:
feed_dict[self._dec_batch] = batch.dec_batch
feed_dict[self._target_batch] = batch.target_batch
feed_dict[self._dec_padding_mask] = batch.dec_padding_mask
return feed_dict
def _add_encoder(self, encoder_inputs, seq_len):
"""Add a single-layer bidirectional LSTM encoder to the graph.
Args:
encoder_inputs: A tensor of shape [batch_size, <=max_enc_steps, emb_size].
seq_len: Lengths of encoder_inputs (before padding). A tensor of shape [batch_size].
Returns:
encoder_outputs:
A tensor of shape [batch_size, <=max_enc_steps, 2*hidden_dim]. It's 2*hidden_dim because it's the concatenation of the forwards and backwards states.
fw_state, bw_state:
Each are LSTMStateTuples of shape ([batch_size,hidden_dim],[batch_size,hidden_dim])
"""
with tf.variable_scope('encoder'):
cell_fw = tf.contrib.rnn.LSTMCell(self._hps.hidden_dim, initializer=self.rand_unif_init, state_is_tuple=True)
cell_bw = tf.contrib.rnn.LSTMCell(self._hps.hidden_dim, initializer=self.rand_unif_init, state_is_tuple=True)
(encoder_outputs, (fw_st, bw_st)) = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, encoder_inputs, dtype=tf.float32, sequence_length=seq_len, swap_memory=True)
encoder_outputs = tf.concat(axis=2, values=encoder_outputs) # concatenate the forwards and backwards states
return encoder_outputs, fw_st, bw_st
def _reduce_states(self, fw_st, bw_st):
"""Add to the graph a linear layer to reduce the encoder's final FW and BW state into a single initial state for the decoder. This is needed because the encoder is bidirectional but the decoder is not.
Args:
fw_st: LSTMStateTuple with hidden_dim units.
bw_st: LSTMStateTuple with hidden_dim units.
Returns:
state: LSTMStateTuple with hidden_dim units.
"""
hidden_dim = self._hps.hidden_dim
with tf.variable_scope('reduce_final_st'):
# Define weights and biases to reduce the cell and reduce the state
w_reduce_c = tf.get_variable('w_reduce_c', [hidden_dim * 2, hidden_dim], dtype=tf.float32, initializer=self.trunc_norm_init)
w_reduce_h = tf.get_variable('w_reduce_h', [hidden_dim * 2, hidden_dim], dtype=tf.float32, initializer=self.trunc_norm_init)
bias_reduce_c = tf.get_variable('bias_reduce_c', [hidden_dim], dtype=tf.float32, initializer=self.trunc_norm_init)
bias_reduce_h = tf.get_variable('bias_reduce_h', [hidden_dim], dtype=tf.float32, initializer=self.trunc_norm_init)
# Apply linear layer
old_c = tf.concat(axis=1, values=[fw_st.c, bw_st.c]) # Concatenation of fw and bw cell
old_h = tf.concat(axis=1, values=[fw_st.h, bw_st.h]) # Concatenation of fw and bw state
new_c = tf.nn.relu(tf.matmul(old_c, w_reduce_c) + bias_reduce_c) # Get new cell from old cell
new_h = tf.nn.relu(tf.matmul(old_h, w_reduce_h) + bias_reduce_h) # Get new state from old state
return tf.contrib.rnn.LSTMStateTuple(new_c, new_h) # Return new cell and state
def _add_decoder(self, inputs):
"""Add attention decoder to the graph. In train or eval mode, you call this once to get output on ALL steps. In decode (beam search) mode, you call this once for EACH decoder step.
Args:
inputs: inputs to the decoder (word embeddings). A list of tensors shape (batch_size, emb_dim)
Returns:
outputs: List of tensors; the outputs of the decoder
out_state: The final state of the decoder
attn_dists: A list of tensors; the attention distributions
p_gens: A list of tensors shape (batch_size, 1); the generation probabilities
coverage: A tensor, the current coverage vector
"""
hps = self._hps
cell = tf.contrib.rnn.LSTMCell(hps.hidden_dim, state_is_tuple=True, initializer=self.rand_unif_init)
prev_coverage = self.prev_coverage if hps.mode=="decode" and hps.coverage else None # In decode mode, we run attention_decoder one step at a time and so need to pass in the previous step's coverage vector each time
mmr_score = self.mmr_score if hps.mode=="decode" and FLAGS.pg_mmr else None
outputs, out_state, attn_dists, p_gens, coverage, pre_attn_dists = attention_decoder(inputs, self._dec_in_state, self._enc_states, self._enc_padding_mask, cell, initial_state_attention=(hps.mode=="decode"), pointer_gen=hps.pointer_gen, use_coverage=hps.coverage, prev_coverage=prev_coverage, mmr_score=mmr_score)
return outputs, out_state, attn_dists, p_gens, coverage, pre_attn_dists
def _calc_final_dist(self, vocab_dists, attn_dists):
"""Calculate the final distribution, for the pointer-generator model
Args:
vocab_dists: The vocabulary distributions. List length max_dec_steps of (batch_size, vsize) arrays. The words are in the order they appear in the vocabulary file.
attn_dists: The attention distributions. List length max_dec_steps of (batch_size, attn_len) arrays
Returns:
final_dists: The final distributions. List length max_dec_steps of (batch_size, extended_vsize) arrays.
"""
with tf.variable_scope('final_distribution'):
# Multiply vocab dists by p_gen and attention dists by (1-p_gen)
vocab_dists = [p_gen * dist for (p_gen,dist) in zip(self.p_gens, vocab_dists)]
attn_dists = [(1-p_gen) * dist for (p_gen,dist) in zip(self.p_gens, attn_dists)]
# Concatenate some zeros to each vocabulary dist, to hold the probabilities for in-article OOV words
extended_vsize = self._vocab.size() + self._max_art_oovs # the maximum (over the batch) size of the extended vocabulary
extra_zeros = tf.zeros((self._hps.batch_size, self._max_art_oovs))
vocab_dists_extended = [tf.concat(axis=1, values=[dist, extra_zeros]) for dist in vocab_dists] # list length max_dec_steps of shape (batch_size, extended_vsize)
# Project the values in the attention distributions onto the appropriate entries in the final distributions
# This means that if a_i = 0.1 and the ith encoder word is w, and w has index 500 in the vocabulary, then we add 0.1 onto the 500th entry of the final distribution
# This is done for each decoder timestep.
# This is fiddly; we use tf.scatter_nd to do the projection
batch_nums = tf.range(0, limit=self._hps.batch_size) # shape (batch_size)
batch_nums = tf.expand_dims(batch_nums, 1) # shape (batch_size, 1)
attn_len = tf.shape(self._enc_batch_extend_vocab)[1] # number of states we attend over
batch_nums = tf.tile(batch_nums, [1, attn_len]) # shape (batch_size, attn_len)
indices = tf.stack( (batch_nums, self._enc_batch_extend_vocab), axis=2) # shape (batch_size, enc_t, 2)
shape = [self._hps.batch_size, extended_vsize]
attn_dists_projected = [tf.scatter_nd(indices, copy_dist, shape) for copy_dist in attn_dists] # list length max_dec_steps (batch_size, extended_vsize)
# Add the vocab distributions and the copy distributions together to get the final distributions
# final_dists is a list length max_dec_steps; each entry is a tensor shape (batch_size, extended_vsize) giving the final distribution for that decoder timestep
# Note that for decoder timesteps and examples corresponding to a [PAD] token, this is junk - ignore.
final_dists = [vocab_dist + copy_dist for (vocab_dist,copy_dist) in zip(vocab_dists_extended, attn_dists_projected)]
return final_dists
def _add_emb_vis(self, embedding_var):
"""Do setup so that we can view word embedding visualization in Tensorboard, as described here:
https://www.tensorflow.org/get_started/embedding_viz
Make the vocab metadata file, then make the projector config file pointing to it."""
train_dir = os.path.join(FLAGS.log_root, "train")
vocab_metadata_path = os.path.join(train_dir, "vocab_metadata.tsv")
self._vocab.write_metadata(vocab_metadata_path) # write metadata file
summary_writer = tf.summary.FileWriter(train_dir)
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = embedding_var.name
embedding.metadata_path = vocab_metadata_path
projector.visualize_embeddings(summary_writer, config)
def _add_seq2seq(self):
"""Add the whole sequence-to-sequence model to the graph."""
hps = self._hps
vsize = self._vocab.size() # size of the vocabulary
with tf.variable_scope('seq2seq'):
# Some initializers
self.rand_unif_init = tf.random_uniform_initializer(-hps.rand_unif_init_mag, hps.rand_unif_init_mag, seed=123)
self.trunc_norm_init = tf.truncated_normal_initializer(stddev=hps.trunc_norm_init_std)
# Add embedding matrix (shared by the encoder and decoder inputs)
with tf.variable_scope('embedding'):
embedding = tf.get_variable('embedding', [vsize, hps.emb_dim], dtype=tf.float32, initializer=self.trunc_norm_init)
if hps.mode=="train": self._add_emb_vis(embedding) # add to tensorboard
emb_enc_inputs = tf.nn.embedding_lookup(embedding, self._enc_batch) # tensor with shape (batch_size, max_enc_steps, emb_size)
emb_dec_inputs = [tf.nn.embedding_lookup(embedding, x) for x in tf.unstack(self._dec_batch, axis=1)] # list length max_dec_steps containing shape (batch_size, emb_size)
if hps.mode == "decode" and hps.coverage:
# Add embedder
self.token_embeddings = tf.nn.embedding_lookup(embedding, self.token_inputs)
# Add the encoder.
enc_outputs, fw_st, bw_st = self._add_encoder(emb_enc_inputs, self._enc_lens)
self._enc_states = enc_outputs
# Our encoder is bidirectional and our decoder is unidirectional so we need to reduce the final encoder hidden state to the right size to be the initial decoder hidden state
self._dec_in_state = self._reduce_states(fw_st, bw_st)
# Add the decoder.
with tf.variable_scope('decoder'):
decoder_outputs, self._dec_out_state, self.attn_dists, self.p_gens, self.coverage, self.pre_attn_dists = self._add_decoder(emb_dec_inputs)
# Add the output projection to obtain the vocabulary distribution
with tf.variable_scope('output_projection'):
w = tf.get_variable('w', [hps.hidden_dim, vsize], dtype=tf.float32, initializer=self.trunc_norm_init)
w_t = tf.transpose(w)
v = tf.get_variable('v', [vsize], dtype=tf.float32, initializer=self.trunc_norm_init)
vocab_scores = [] # vocab_scores is the vocabulary distribution before applying softmax. Each entry on the list corresponds to one decoder step
for i,output in enumerate(decoder_outputs):
if i > 0:
tf.get_variable_scope().reuse_variables()
vocab_scores.append(tf.nn.xw_plus_b(output, w, v)) # apply the linear layer
vocab_dists = [tf.nn.softmax(s) for s in vocab_scores] # The vocabulary distributions. List length max_dec_steps of (batch_size, vsize) arrays. The words are in the order they appear in the vocabulary file.
# For pointer-generator model, calc final distribution from copy distribution and vocabulary distribution
if FLAGS.pointer_gen:
final_dists = self._calc_final_dist(vocab_dists, self.attn_dists)
else: # final distribution is just vocabulary distribution
final_dists = vocab_dists
if hps.mode in ['train', 'eval']:
# Calculate the loss
with tf.variable_scope('loss'):
if FLAGS.pointer_gen:
# Calculate the loss per step
# This is fiddly; we use tf.gather_nd to pick out the probabilities of the gold target words
loss_per_step = [] # will be list length max_dec_steps containing shape (batch_size)
batch_nums = tf.range(0, limit=hps.batch_size) # shape (batch_size)
for dec_step, dist in enumerate(final_dists):
targets = self._target_batch[:,dec_step] # The indices of the target words. shape (batch_size)
indices = tf.stack( (batch_nums, targets), axis=1) # shape (batch_size, 2)
gold_probs = tf.gather_nd(dist, indices) # shape (batch_size). prob of correct words on this step
losses = -tf.log(gold_probs)
loss_per_step.append(losses)
# Apply dec_padding_mask and get loss
self._loss = _mask_and_avg(loss_per_step, self._dec_padding_mask)
else: # baseline model
self._loss = tf.contrib.seq2seq.sequence_loss(tf.stack(vocab_scores, axis=1), self._target_batch, self._dec_padding_mask) # this applies softmax internally
tf.summary.scalar('loss', self._loss)
# Calculate coverage loss from the attention distributions
if hps.coverage:
with tf.variable_scope('coverage_loss'):
self._coverage_loss = _coverage_loss(self.attn_dists, self._dec_padding_mask)
tf.summary.scalar('coverage_loss', self._coverage_loss)
self._total_loss = self._loss + hps.cov_loss_wt * self._coverage_loss
tf.summary.scalar('total_loss', self._total_loss)
if hps.mode == "decode":
# We run decode beam search mode one decoder step at a time
assert len(final_dists)==1 # final_dists is a singleton list containing shape (batch_size, extended_vsize)
final_dists = final_dists[0]
topk_probs, self._topk_ids = tf.nn.top_k(final_dists, hps.batch_size*2) # take the k largest probs. note batch_size=beam_size in decode mode
self._topk_log_probs = tf.log(topk_probs)
def _add_train_op(self):
"""Sets self._train_op, the op to run for training."""
# Take gradients of the trainable variables w.r.t. the loss function to minimize
loss_to_minimize = self._total_loss if self._hps.coverage else self._loss
tvars = tf.trainable_variables()
gradients = tf.gradients(loss_to_minimize, tvars, aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE)
# Clip the gradients
with tf.device("/gpu:0"):
grads, global_norm = tf.clip_by_global_norm(gradients, self._hps.max_grad_norm)
# Add a summary
tf.summary.scalar('global_norm', global_norm)
# Apply adagrad optimizer
optimizer = tf.train.AdagradOptimizer(self._hps.lr, initial_accumulator_value=self._hps.adagrad_init_acc)
with tf.device("/gpu:0"):
self._train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=self.global_step, name='train_step')
def build_graph(self):
"""Add the placeholders, model, global step, train_op and summaries to the graph"""
logging.info('Building graph...')
t0 = time.time()
self._add_placeholders()
with tf.device("/gpu:0"):
self._add_seq2seq()
self.global_step = tf.Variable(0, name='global_step', trainable=False)
if self._hps.mode == 'train':
self._add_train_op()
self._summaries = tf.summary.merge_all()
t1 = time.time()
logging.info('Time to build graph: %i seconds', t1 - t0)
def run_train_step(self, sess, batch):
"""Runs one training iteration. Returns a dictionary containing train op, summaries, loss, global_step and (optionally) coverage loss."""
feed_dict = self._make_feed_dict(batch)
to_return = {
'train_op': self._train_op,
'summaries': self._summaries,
'loss': self._loss,
'global_step': self.global_step,
}
if self._hps.coverage:
to_return['coverage_loss'] = self._coverage_loss
return sess.run(to_return, feed_dict)
def run_eval_step(self, sess, batch):
"""Runs one evaluation iteration. Returns a dictionary containing summaries, loss, global_step and (optionally) coverage loss."""
feed_dict = self._make_feed_dict(batch)
to_return = {
'summaries': self._summaries,
'loss': self._loss,
'global_step': self.global_step,
}
if self._hps.coverage:
to_return['coverage_loss'] = self._coverage_loss
return sess.run(to_return, feed_dict)
def run_encoder(self, sess, batch):
"""For beam search decoding. Run the encoder on the batch and return the encoder states and decoder initial state.
Args:
sess: Tensorflow session.
batch: Batch object that is the same example repeated across the batch (for beam search)
Returns:
enc_states: The encoder states. A tensor of shape [batch_size, <=max_enc_steps, 2*hidden_dim].
dec_in_state: A LSTMStateTuple of shape ([1,hidden_dim],[1,hidden_dim])
"""
feed_dict = self._make_feed_dict(batch, just_enc=True) # feed the batch into the placeholders
(enc_states, dec_in_state, global_step) = sess.run([self._enc_states, self._dec_in_state, self.global_step], feed_dict) # run the encoder
# dec_in_state is LSTMStateTuple shape ([batch_size,hidden_dim],[batch_size,hidden_dim])
# Given that the batch is a single example repeated, dec_in_state is identical across the batch so we just take the top row.
dec_in_state = tf.contrib.rnn.LSTMStateTuple(dec_in_state.c[0], dec_in_state.h[0])
return enc_states, dec_in_state
def run_embedder(self, sess, token_inputs):
feed_dict = {self.token_inputs: token_inputs}
to_return = self.token_embeddings
embs = sess.run(to_return, feed_dict=feed_dict)
return embs
def decode_onestep(self, sess, batch, latest_tokens, enc_states, dec_init_states, prev_coverage, mmr_score):
"""For beam search decoding. Run the decoder for one step.
Args:
sess: Tensorflow session.
batch: Batch object containing single example repeated across the batch
latest_tokens: Tokens to be fed as input into the decoder for this timestep
enc_states: The encoder states.
dec_init_states: List of beam_size LSTMStateTuples; the decoder states from the previous timestep
prev_coverage: List of np arrays. The coverage vectors from the previous timestep. List of None if not using coverage.
Returns:
ids: top 2k ids. shape [beam_size, 2*beam_size]
probs: top 2k log probabilities. shape [beam_size, 2*beam_size]
new_states: new states of the decoder. a list length beam_size containing
LSTMStateTuples each of shape ([hidden_dim,],[hidden_dim,])
attn_dists: List length beam_size containing lists length attn_length.
p_gens: Generation probabilities for this step. A list length beam_size. List of None if in baseline mode.
new_coverage: Coverage vectors for this step. A list of arrays. List of None if coverage is not turned on.
"""
beam_size = len(dec_init_states)
# Turn dec_init_states (a list of LSTMStateTuples) into a single LSTMStateTuple for the batch
cells = [np.expand_dims(state.c, axis=0) for state in dec_init_states]
hiddens = [np.expand_dims(state.h, axis=0) for state in dec_init_states]
new_c = np.concatenate(cells, axis=0) # shape [batch_size,hidden_dim]
new_h = np.concatenate(hiddens, axis=0) # shape [batch_size,hidden_dim]
new_dec_in_state = tf.contrib.rnn.LSTMStateTuple(new_c, new_h)
feed = {
self._enc_states: enc_states,
self._enc_padding_mask: batch.enc_padding_mask,
self._dec_in_state: new_dec_in_state,
self._dec_batch: np.transpose(np.array([latest_tokens])),
}
to_return = {
"ids": self._topk_ids,
"probs": self._topk_log_probs,
"states": self._dec_out_state,
"attn_dists": self.attn_dists,
"pre_attn_dists": self.pre_attn_dists
}
if FLAGS.pointer_gen:
feed[self._enc_batch_extend_vocab] = batch.enc_batch_extend_vocab
feed[self._max_art_oovs] = batch.max_art_oovs
to_return['p_gens'] = self.p_gens
if self._hps.coverage:
feed[self.prev_coverage] = np.stack(prev_coverage, axis=0)
to_return['coverage'] = self.coverage
if FLAGS.pg_mmr:
feed[self.mmr_score] = mmr_score
# to_return['p_gens'] = self.p_gens
results = sess.run(to_return, feed_dict=feed) # run the decoder step
# Convert results['states'] (a single LSTMStateTuple) into a list of LSTMStateTuple -- one for each hypothesis
new_states = [tf.contrib.rnn.LSTMStateTuple(results['states'].c[i, :], results['states'].h[i, :]) for i in xrange(beam_size)]
# Convert singleton list containing a tensor to a list of k arrays
assert len(results['attn_dists'])==1
attn_dists = results['attn_dists'][0].tolist()
assert len(results['pre_attn_dists'])==1
pre_attn_dists = results['pre_attn_dists'][0].tolist()
if FLAGS.pointer_gen:
# Convert singleton list containing a tensor to a list of k arrays
assert len(results['p_gens'])==1
p_gens = results['p_gens'][0].tolist()
else:
p_gens = [None for _ in xrange(beam_size)]
# Convert the coverage tensor to a list length k containing the coverage vector for each hypothesis
if FLAGS.coverage:
new_coverage = results['coverage'].tolist()
assert len(new_coverage) == beam_size
else:
new_coverage = [None for _ in xrange(beam_size)]
return results['ids'], results['probs'], new_states, attn_dists, p_gens, new_coverage, pre_attn_dists
def _mask_and_avg(values, padding_mask):
"""Applies mask to values then returns overall average (a scalar)
Args:
values: a list length max_dec_steps containing arrays shape (batch_size).
padding_mask: tensor shape (batch_size, max_dec_steps) containing 1s and 0s.
Returns:
a scalar
"""
dec_lens = tf.reduce_sum(padding_mask, axis=1) # shape batch_size. float32
values_per_step = [v * padding_mask[:,dec_step] for dec_step,v in enumerate(values)]
values_per_ex = sum(values_per_step)/dec_lens # shape (batch_size); normalized value for each batch member
return tf.reduce_mean(values_per_ex) # overall average
def _coverage_loss(attn_dists, padding_mask):
"""Calculates the coverage loss from the attention distributions.
Args:
attn_dists: The attention distributions for each decoder timestep. A list length max_dec_steps containing shape (batch_size, attn_length)
padding_mask: shape (batch_size, max_dec_steps).
Returns:
coverage_loss: scalar
"""
coverage = tf.zeros_like(attn_dists[0]) # shape (batch_size, attn_length). Initial coverage is zero.
covlosses = [] # Coverage loss per decoder timestep. Will be list length max_dec_steps containing shape (batch_size).
for a in attn_dists:
covloss = tf.reduce_sum(tf.minimum(a, coverage), [1]) # calculate the coverage loss for this step
covlosses.append(covloss)
coverage += a # update the coverage vector
coverage_loss = _mask_and_avg(covlosses, padding_mask)
return coverage_loss