-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
executable file
·139 lines (119 loc) · 4.26 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#import matplotlib.pyplot as plt
#import matplotlib.font_manager as fm
import os
import sys
import json
import numpy as np
import pandas as pd
import pprint
import re
import time
from sklearn.decomposition import PCA
from songdataset import SongDataset
def csvToLatex(csvPath, latexPath):
df = pd.read_csv(csvPath, header=0, index_col=0)
df.style.to_latex(latexPath)
def loadConfig(configFile=None):
info = {}
if configFile is None:
configFile = sys.argv[1] if (len(sys.argv) > 1) else input("Please enter the path of your config file: ")
while not os.path.exists(configFile) or not configFile.endswith(".json"):
configFile = input("Config JSON file not found! Please enter a valid path: ")
with open(configFile) as f:
info = json.load(f)
return info
def statobj(data):
obj = {}
obj["avg"] = float(np.nanmean(data))
obj["std"] = float(np.nanstd(data))
obj["var"] = float(np.nanvar(data))
obj["min"] = float(np.nanmin(data))
obj["max"] = float(np.nanmax(data))
obj["med"] = float(np.nanmedian(data))
return obj
def jsonout(obj, file):
json_obj = json.dumps(obj, indent=4)
with open(file, "w") as outfile:
outfile.write(json_obj)
def sign(num):
if num > 0:
return '+'
else:
return '-'
def makeDir(key):
if not os.path.exists(key):
os.makedirs(key)
def makeTestDir(name):
test_time = str(time.strftime("%y-%m-%d-%H%M"))
makeDir("./test")
dir_name = "./test/{}-{}".format(test_time, name)
makeDir(dir_name)
return dir_name
def string2arrPoint(key):
positions = key.split()
return [float(positions[i]) for i in range(len(positions))]
def arr2stringPoint(arr):
s = ""
for i in range(len(arr)):
s = s + "{}{:.9f} ".format(sign(arr[i]), abs(arr[i]))
return s[:-1]
# Adapted from https://stackoverflow.com/a/59591409
def read_pts(filename):
"""Read a .PTS landmarks file into a numpy ndarray"""
with open(filename, 'rb') as f:
# process the PTS header for n_rows and version information
rows = version = None
for line in f:
if line.startswith(b"//"): # comment line, skip
continue
header, _, value = line.strip().partition(b':')
if not value:
if header != b'{':
raise ValueError("Not a valid pts file")
if version != 1:
raise ValueError(f"Not a supported PTS version: {version}")
break
try:
if header == b"n_points":
rows = int(value)
elif header == b"version":
version = float(value) # version: 1 or version: 1.0
elif not header.startswith(b"image_size_"):
# returning the image_size_* data is left as an excercise
# for the reader.
raise ValueError
except ValueError:
raise ValueError("Not a valid pts file")
# if there was no n_points line, make sure the closing } line
# is not going to trip up the numpy reader by marking it as a comment
points = np.loadtxt(f, max_rows=rows, comments="}")
if rows is not None and len(points) < rows:
raise ValueError(f"Failed to load all {rows} points")
return points
def process_bbox(points):
points = points.T
x, y = points[0], points[1]
left, right = min(x), max(x)
top, bottom = min(y), max(y)
return left, top, right, bottom
'''
def find_nc_PCA(dataset, n_c = 0, file = ""):
X = dataset.feat_df.iloc[:,:].values
evr = np.cumsum(PCA(None).fit(X).explained_variance_ratio_)
if n_c == 0:
while evr[n_c] < 0.95: n_c += 1
plt.plot(evr)
plt.xlabel("Number of dimensions")
plt.ylabel("% of total variance")
plt.title("PCA Analysis for {} ({} at {})".format(
dataset.name, np.around(evr[n_c], decimals=3), n_c
))
if file != "":
plt.savefig(file, dpi=600)
else:
plt.show(block=False)
plt.clf()
plt.close()
X_pca = PCA(n_components=n_c).fit_transform(X)
return n_c, X_pca
'''