forked from initc3/babySNARK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbabysnark.py
303 lines (246 loc) · 8.8 KB
/
babysnark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#| # Baby SNARK (do do dodo dodo)
#| _A simple but expressive SNARK._
#|
#| This is a self-contained development of SNARKs for NP. It is based on
#| [Square Span Program SNARKs](https://eprint.iacr.org/2014/718) by Danezis et al.,
#| which are expressive enough to encode boolean circuits.
#|
#| For detail about the algorithm, especially its security definition and soundness,
#| proof, see [the acompanying paper](https://github.com/initc3/babySNARK/blob/master/babysnark.pdf)
#|
#| This implementation in this file is optimized for readability and simplicity, not
#| performance. The result is that the proof is succinct, but the computation overhead
#| of `Setup` and `Prove` is quadratic in the circuit size, rather than quasilinear.
#| In `babysnark_opt.py` you can find a quasilinear implementation.
#| ## Polynomials library
#| We start with a library, `finite_field/`, for polynomials over finite fields,
#| represented by coefficients. The library includes:
#| - Constructing a polynomial from a list of coefficients
#| - Addition, scaling, multiplication of polynomials
#| - Euclidean division of polynomials
#| - Lagrange interpolation of polynomials
#|
#| The library is adapted from tutorials by Jeremy Kun.
#| See [A Programmer's Introudction to Mathematics](https://github.com/pim-book/programmers-introduction-to-mathematics)
#| and [Programming with Finite Fields](https://jeremykun.com/2014/03/13/programming-with-finite-fields/)
from finitefield.finitefield import FiniteField
from finitefield.polynomial import polynomialsOver
# Example: Fp(53)
Fp = FiniteField(53,1)
Poly = polynomialsOver(Fp)
def _polydemo():
p1 = Poly([1,2,3,4,5])
# print(p1)
# 1 + 2 t + 3 t^2 + 4 t^3 + 5 t^5
_polydemo()
#| ## Choosing a field and pairing-friendly elliptic curve
#| We need to define a finite field to work with, that corresponds to the order
#| of a pairing-friendly curve.
#| To keep notation down to a minimum, BabySNARK is defined for a symmetric (Type-1)
#| elliptic curve group, that is $pair : G \times G \rightarrow G_T$.
#| However, since the most readily available curve, `bls12-381`, is asymmetric (Type-3),
#| we write an adaptor for it. See `py_ecc/` and `ssbls12.py` for details.
from ssbls12 import Fp, Poly, Group
G = Group.G
GT = Group.GT
#| ## Choosing the evaluation domain
#| Define some canonical roots $r_1,...,r_m$. These are public parameters
#| and can be set arbitrarily, and in particular they don't depend on the
#| circuit (though there must be enough of them to represent the problem
#| instance).
# This is a global value.
# Initializing it to 1,2,...,128 is enough for small examples in this file.
# We'll overwrite it in `babysnark_setup` when a larger constraint system
# is needed. And in `babysnark_opt.py` we'll define a different policy for
# choosing roots that leads to FFT optimization.
ROOTS = [Fp(i) for i in range(128)]
#| Here we define the vanishing polynomial, which is a degree-$m$ polynomial
#| that roots at the $m$ distinct locations given.
def vanishing_poly(S):
"""
args:
S (m vector)
returns:
p(X) = (X-S1)*(X-S2)*...*(X-Sm)
"""
p = Poly([Fp(1)])
for s in S:
p *= Poly([-s, Fp(1)])
return p
#| ## Square Constraint Systems
#| We'll represent square constraint systems using matrix-vector
#| multiplication.
#|
#| The constraint system itself is defined by:
#| - `U`$~~$ (an `m` $\times$ `n` matrix)
#|
#| The witness (including the statement)
#| - `a`$~~$ (an `n` vector)
#|
#| The statement is:
#| - `a_stmt` (an `n_stmt` size vector, where `n_stmt`<`n`)
#|
#| The predicate to prove is:
#| - $(\!$ `U` $\!\cdot\!$ `a` $\!)^2 = 1$
#| - `a[:n_stmt]`$ = $`a_stmt`
#|
#| The code below generates approximately random instances of Square
#| Constraint Systems with a known solution. We'll use these for
#| tests and examples, though in reality the problem instances would
#| be generated from a circuit.
# Use numpy to provide element-wise operations and fancy indexing
import numpy as np
import random
# Generate random problem instances
def random_fp():
return Fp(random.randint(0, Fp.p-1))
def random_matrix(m, n):
return np.array([[random_fp() for _ in range(n)] for _ in range(m)])
def generate_solved_instance(m, n):
"""
Generates a random circuit and satisfying witness
U, (stmt, wit)
"""
# Generate a, U
a = np.array([random_fp() for _ in range(n)])
U = random_matrix(m, n)
# Normalize U to satisfy constraints
Ua2 = U.dot(a) * U.dot(a)
for i in range(m):
U[i,:] /= Ua2[i].sqrt()
assert((U.dot(a) * U.dot(a) == 1).all())
return U, a
#-
# Example
U, a = generate_solved_instance(10, 12)
# print(U)
#| # Baby Snark
#|
#| Here we define the Setup, Prover, and Verifier. Follow along with
#| the pseudocode from the [accompanying writeup](https://github.com/initc3/babySNARK/blob/master/babysnark.pdf)
# Evaluate a polynomial in exponent
def evaluate_in_exponent(powers_of_tau, poly):
# powers_of_tau:
# [G*0, G*tau, ...., G*(tau**m)]
# poly:
# degree-m bound polynomial in coefficient form
print('P.degree:', poly.degree())
print('taus:', len(powers_of_tau))
assert poly.degree()+1 < len(powers_of_tau)
return sum([powers_of_tau[i] * poly.coefficients[i] for i in
range(poly.degree()+1)], G*0)
# Setup
def babysnark_setup(U, n_stmt):
(m, n) = U.shape
assert n_stmt < n
# Generate roots for each gate
global ROOTS
if len(ROOTS) < m:
ROOTS = tuple(range(m))
# Generate polynomials u from columns of U
Us = [Poly.interpolate(ROOTS[:m], U[:,k]) for k in range(n)]
# Trapdoors
global tau, beta, gamma
tau = random_fp()
beta = random_fp()
gamma = random_fp()
# CRS elements
CRS = [G * (tau ** i) for i in range(m+1)] + \
[G * gamma, G * (beta * gamma)] + \
[G * (beta * Ui(tau)) for Ui in Us[n_stmt:]]
# Precomputation
# Note: This is not considered part of the trusted setup, since it
# could be computed direcftly from the G * (tau **i) terms.
# Compute the target poly term
t = vanishing_poly(ROOTS[:m])
T = G * t(tau)
# Evaluate the Ui's corresponding to statement values
Uis = [G * Ui(tau) for Ui in Us]
precomp = Uis, T
return CRS, precomp
# Prover
def babysnark_prover(U, n_stmt, CRS, precomp, a):
(m, n) = U.shape
assert n == len(a)
assert len(CRS) == (m + 1) + 2 + (n - n_stmt)
assert len(ROOTS) >= m
# Parse the CRS
taus = CRS[:m+1]
bUis = CRS[-(n-n_stmt):]
Uis, T = precomp
# Target is the vanishing polynomial
t = vanishing_poly(ROOTS[:m])
# 1. Find the polynomial p(X)
# Convert the basis polynomials Us to coefficient form by interpolating
Us = [Poly.interpolate(ROOTS[:m], U[:,k]) for k in range(n)]
# First compute v
v = Poly([])
for k in range(n):
v += Us[k] * a[k]
# Finally p
p = v * v - 1
# 2. Compute the H term
# Find the polynomial h by dividing p / t
h = p / t
# assert p == h * t
H = evaluate_in_exponent(taus, h)
# 3. Compute the Vw terms, using precomputed Uis
Vw = sum([Uis[k] * a[k] for k in range(n_stmt, n)], G*0)
# assert G * vw(tau) == Vw
# 4. Compute the Bw terms
Bw = sum([bUis[k-n_stmt] * a[k] for k in range(n_stmt, n)], G*0)
# assert G * (beta * vw(tau)) == Bw
# V = G * v(tau)
# assert H.pair(T) * GT == V.pair(V)
# print('H:', H)
# print('Bw:', Bw)
# print('Vw:', Vw)
return H, Bw, Vw
# Verifier
def babysnark_verifier(U, CRS, precomp, a_stmt, pi):
(m, n) = U.shape
(H, Bw, Vw) = pi
assert len(ROOTS) >= m
n_stmt = len(a_stmt)
# Parse the CRS
taus = CRS[:m+1]
gamma = CRS[m+1]
gammabeta = CRS[m+2]
bUis = CRS[-(n-n_stmt):]
Uis, T = precomp
# Compute Vs and V = Vs + Vw
Vs = sum([Uis[k] * a_stmt[k] for k in range(n_stmt)], G * 0)
V = Vs + Vw
# Check 1
print('Checking (1)')
assert Bw.pair(gamma) == Vw.pair(gammabeta)
# Check 2
print('Checking (2)')
# print('GT', GT)
# print('V:', V)
# print('H.pair(T) * GT:', H.pair(T) * GT)
# print('V.pair(V):', V.pair(V))
assert H.pair(T) * GT == V.pair(V)
return True
#-
if __name__ == '__main__':
# Sample a problem instance
print("Generating a Square Span Program instance")
n_stmt = 4
m,n = (16, 6)
U, a = generate_solved_instance(m, n)
a_stmt = a[:n_stmt]
print('U:', repr(U))
print('a_stmt:', a_stmt)
print('nonzero in U:', np.sum(U == Fp(0)))
print('m x n:', m * n)
# Setup
print("Computing Setup...")
CRS, precomp = babysnark_setup(U, n_stmt)
print("CRS length:", len(CRS))
# Prover
print("Proving...")
H, Bw, Vw = babysnark_prover(U, n_stmt, CRS, precomp, a)
# Verifier
print("Verifying...")
babysnark_verifier(U, CRS, precomp, a[:n_stmt], (H, Bw, Vw))