forked from joeVenner/FaceRecognition-GUI-APP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
47 lines (37 loc) · 1.79 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import cv2
def predict(name, sample):
face_cascade = cv2.CascadeClassifier('./data/haarcascade_frontalface_default.xml')
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read(f"./data/classifiers/{name}_classifier.xml")
cap = cv2.VideoCapture(sample)
pred = False
while True:
ret, frame = cap.read()
#default_img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray,1.3,5)
for (x,y,w,h) in faces:
roi_gray = gray[y:y+h,x:x+w]
id,confidence = recognizer.predict(roi_gray)
confidence = 100 - int(confidence)
if confidence > 50:
#if u want to print confidence level
#confidence = 100 - int(confidence)
pred = True
text = 'Recognized: '+ name.upper()
font = cv2.FONT_HERSHEY_PLAIN
frame = cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
frame = cv2.putText(frame, text, (x, y-4), font, 1, (0, 255, 0), 1, cv2.LINE_AA)
else:
pred = False
text = "Unknown Face"
font = cv2.FONT_HERSHEY_PLAIN
frame = cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
frame = cv2.putText(frame, text, (x, y-4), font, 1, (0, 0,255), 1, cv2.LINE_AA)
print(pred)
cv2.imshow("image", frame)
if cv2.waitKey(20) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
predict('tho', r'data\WIN_20230920_07_56_11_Pro.mp4')