We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
`class CC_module(nn.Module): def init(self,in_dim): super(CC_module, self).init() self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1) self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1) self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.softmax = Softmax(dim=3) self.INF = INF self.gamma = nn.Parameter(torch.zeros(1)) def forward(self, x): m_batchsize, _, height, width = x.size() proj_query = self.query_conv(x) proj_query_H = proj_query.permute(0,3,1,2).contiguous().view(m_batchsizewidth,-1,height).permute(0, 2, 1) proj_query_W = proj_query.permute(0,2,1,3).contiguous().view(m_batchsizeheight,-1,width).permute(0, 2, 1) proj_key = self.key_conv(x) proj_key_H = proj_key.permute(0,3,1,2).contiguous().view(m_batchsizewidth,-1,height) proj_key_W = proj_key.permute(0,2,1,3).contiguous().view(m_batchsizeheight,-1,width) proj_value = self.value_conv(x) proj_value_H = proj_value.permute(0,3,1,2).contiguous().view(m_batchsizewidth,-1,height) proj_value_W = proj_value.permute(0,2,1,3).contiguous().view(m_batchsizeheight,-1,width) energy_H = (torch.bmm(proj_query_H, proj_key_H)+self.INF(m_batchsize, height, width)).view(m_batchsize,width,height,height).permute(0,2,1,3) energy_W = torch.bmm(proj_query_W, proj_key_W).view(m_batchsize,height,width,width) concate = self.softmax(torch.cat([energy_H, energy_W], 3))
att_H = concate[:,:,:,0:height].permute(0,2,1,3).contiguous().view(m_batchsize*width,height,height) #print(concate) #print(att_H) att_W = concate[:,:,:,height:height+width].contiguous().view(m_batchsize*height,width,width) out_H = torch.bmm(proj_value_H, att_H.permute(0, 2, 1)).view(m_batchsize,width,-1,height).permute(0,2,3,1) out_W = torch.bmm(proj_value_W, att_W.permute(0, 2, 1)).view(m_batchsize,height,-1,width).permute(0,2,1,3) #print(out_H.size(),out_W.size()) return self.gamma*(out_H + out_W) + x`
I am confused that why self.gamma = zero(1)
The text was updated successfully, but these errors were encountered:
nn.Parameter(torch.zeros(1)) means gamma initialized as 0, which is used in the official implementation
Sorry, something went wrong.
No branches or pull requests
`class CC_module(nn.Module):
def init(self,in_dim):
super(CC_module, self).init()
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.softmax = Softmax(dim=3)
self.INF = INF
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
m_batchsize, _, height, width = x.size()
proj_query = self.query_conv(x)
proj_query_H = proj_query.permute(0,3,1,2).contiguous().view(m_batchsizewidth,-1,height).permute(0, 2, 1)
proj_query_W = proj_query.permute(0,2,1,3).contiguous().view(m_batchsizeheight,-1,width).permute(0, 2, 1)
proj_key = self.key_conv(x)
proj_key_H = proj_key.permute(0,3,1,2).contiguous().view(m_batchsizewidth,-1,height)
proj_key_W = proj_key.permute(0,2,1,3).contiguous().view(m_batchsizeheight,-1,width)
proj_value = self.value_conv(x)
proj_value_H = proj_value.permute(0,3,1,2).contiguous().view(m_batchsizewidth,-1,height)
proj_value_W = proj_value.permute(0,2,1,3).contiguous().view(m_batchsizeheight,-1,width)
energy_H = (torch.bmm(proj_query_H, proj_key_H)+self.INF(m_batchsize, height, width)).view(m_batchsize,width,height,height).permute(0,2,1,3)
energy_W = torch.bmm(proj_query_W, proj_key_W).view(m_batchsize,height,width,width)
concate = self.softmax(torch.cat([energy_H, energy_W], 3))
I am confused that why self.gamma = zero(1)
The text was updated successfully, but these errors were encountered: