-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlayers.py
366 lines (256 loc) · 13.7 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import tensorflow as tf
from tensorflow.python.client import device_lib
import numpy as np
import util
import argparse
import os
import csv
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
input_feature_dim = 97
cond_step_dim = 8
cond_wafer_dim = 24
cond_dim = cond_step_dim + cond_wafer_dim
lstm_sequence_length = 20
lstm_hidden_size_layer1 = 64
lstm_hidden_size_layer2 = 64
lstm_feature_dim = lstm_hidden_size_layer1
lstm_z_sequence_dim = 16
lstm_linear_transform_input_dim = 2 * lstm_feature_dim
g_encoder_z_local_dim = 16
g_encoder_z_dim = lstm_z_sequence_dim + g_encoder_z_local_dim + cond_dim
g_encoder_input_dim = input_feature_dim
g_encoder_layer1_dim = 84
g_encoder_layer2_dim = 64
g_encoder_layer3_dim = 32
g_decoder_output_dim = input_feature_dim
g_decoder_layer2_dim = 72
g_decoder_layer1_dim = 84
d_layer_1_dim = input_feature_dim
d_layer_2_dim = 64
d_layer_3_dim = 32
d_layer_4_dim = 16
num_block_layers = 3
dense_layer_depth = 16
def lstm_network(input, scope='lstm_network'):
with tf.variable_scope(scope):
# tf.nn.rnn_cell
lstm_cell1 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer1, forget_bias=1.0)
lstm_cell2 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer2, forget_bias=1.0)
lstm_cells = tf.contrib.rnn.MultiRNNCell(cells=[lstm_cell1, lstm_cell2], state_is_tuple=True)
# tf.nn.rnn_cell
# lstm_cell1 = tf.nn.rnn_cell.LSTMCell(lstm_hidden_size_layer1, forget_bias=1.0)
# lstm_cell2 = tf.nn.rnn_cell.LSTMCell(lstm_hidden_size_layer2, forget_bias=1.0)
#lstm_cells = tf.nn.rnn_cell.MultiRNNCell(cells=[lstm_cell1, lstm_cell2], state_is_tuple=True)
# initial_state = lstm_cells.zero_state(batch_size, tf.float32)
_, states = tf.nn.dynamic_rnn(lstm_cells, input, dtype=tf.float32, initial_state=None)
# z_sequence_output = states[1].h
# print(z_sequence_output.get_shape())
states_concat = tf.concat([states[0].h, states[1].h], 1)
#def fc(input, scope, out_dim, non_linear_fn=None, initial_value=None, use_bias=True):
z_sequence_output = fc(states_concat, lstm_z_sequence_dim, scope='linear_transform')
return z_sequence_output
def fc(input_data, out_dim, non_linear_fn=None, initial_value=None, use_bias=True, scope='fc'):
with tf.variable_scope(scope):
input_dims = input_data.get_shape().as_list()
if len(input_dims) == 4:
_, input_h, input_w, num_channels = input_dims
in_dim = input_h * input_w * num_channels
flat_input = tf.reshape(input_data, [-1, in_dim])
else:
in_dim = input_dims[-1]
flat_input = input_data
if initial_value is None:
fc_weight = tf.get_variable("weights", shape=[in_dim, out_dim], initializer=tf.random_normal_initializer(mean=0., stddev=0.01))
fc_bias = tf.get_variable("bias", shape=[out_dim], initializer=tf.constant_initializer(0.0))
else:
fc_weight = tf.get_variable("weights", initializer=initial_value[0])
fc_bias = tf.get_variable("bias", shape=[out_dim], initializer=initial_value[1])
if use_bias:
output = tf.add(tf.matmul(flat_input, fc_weight), fc_bias)
else:
output = tf.matmul(flat_input, fc_weight)
if non_linear_fn is None:
return output
else:
activation = non_linear_fn(output)
return activation
def batch_norm(x, b_train, scope, reuse=False):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
n_out = x.get_shape().as_list()[-1]
beta = tf.get_variable('beta', initializer=tf.constant(0.0, shape=[n_out]))
gamma = tf.get_variable('gamma', initializer=tf.constant(1.0, shape=[n_out]))
batch_mean, batch_var = tf.nn.moments(x, [0], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(b_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
return normed
def conv(input, scope, filter_dims, stride_dims, padding='SAME',
non_linear_fn=tf.nn.relu, dilation=[1, 1, 1, 1], bias=True):
input_dims = input.get_shape().as_list()
assert (len(input_dims) == 4) # batch_size, height, width, num_channels_in
assert (len(filter_dims) == 3) # height, width and num_channels out
assert (len(stride_dims) == 2) # stride height and width
num_channels_in = input_dims[-1]
filter_h, filter_w, num_channels_out = filter_dims
stride_h, stride_w = stride_dims
with tf.variable_scope(scope):
conv_weight = tf.Variable(
tf.truncated_normal([filter_h, filter_w, num_channels_in, num_channels_out], stddev=0.1, dtype=tf.float32))
conv_bias = tf.Variable(tf.zeros([num_channels_out], dtype=tf.float32))
map = tf.nn.conv2d(input, conv_weight, strides=[1, stride_h, stride_w, 1], padding=padding, dilations=dilation)
if bias is True:
map = tf.nn.bias_add(map, conv_bias)
if non_linear_fn is not None:
activation = non_linear_fn(map)
else:
activation = map
# print(activation.get_shape().as_list())
return activation
def batch_norm_conv(x, b_train, scope):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
n_out = x.get_shape().as_list()[-1]
beta = tf.get_variable('beta', initializer=tf.constant(0.0, shape=[n_out]))
gamma = tf.get_variable('gamma', initializer=tf.constant(1.0, shape=[n_out]))
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(b_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
return normed
def add_dense_layer(layer, filter_dims, act_func=tf.nn.relu, scope='dense_layer',
use_bn=True, bn_phaze=False, use_bias=False, dilation=[1, 1, 1, 1]):
with tf.variable_scope(scope):
l = layer
if use_bn:
l = batch_norm_conv(l, b_train=bn_phaze, scope='bn')
l = act_func(l)
l = conv(l, scope='conv', filter_dims=filter_dims, stride_dims=[1, 1], dilation=dilation,
non_linear_fn=None, bias=use_bias)
l = tf.concat([l, layer], 3)
return l
def add_residual_layer(layer, filter_dims, act_func=tf.nn.relu, scope='residual_layer',
use_bn=True, bn_phaze=False, use_bias=False, dilation=[1, 1, 1, 1]):
with tf.variable_scope(scope):
l = layer
if use_bn:
l = batch_norm_conv(l, b_train=bn_phaze, scope='bn')
l = act_func(l)
l = conv(l, scope='conv', filter_dims=filter_dims, stride_dims=[1, 1], dilation=dilation, non_linear_fn=act_func, bias=use_bias)
return l
def add_dense_transition_layer(layer, filter_dims, stride_dims=[1, 1], act_func=tf.nn.relu, scope='transition',
use_bn=True, bn_phaze=False, use_pool=True, use_bias=False, dilation=[1, 1, 1, 1]):
with tf.variable_scope(scope):
if use_bn:
l = batch_norm_conv(layer, b_train=bn_phaze, scope='bn')
l = act_func(l)
l = conv(l, scope='conv', filter_dims=filter_dims, stride_dims=stride_dims, non_linear_fn=None,
bias=use_bias, dilation=dilation)
if use_pool:
l = tf.nn.max_pool(l, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
return l
def global_avg_pool(input_data, output_length=1, padding='VALID', scope='gloval_avg_pool'):
input_dims = input_data.get_shape().as_list()
assert (len(input_dims) == 4) # batch_size, height, width, num_channels_in
num_channels_in = input_dims[-1]
height = input_dims[1]
width = input_dims[2]
with tf.variable_scope(scope):
if output_length == 1:
pool = tf.nn.avg_pool(input_data, [1, height, width, 1], strides=[1, 1, 1, 1], padding=padding)
pool = tf.reduce_mean(pool, axis=[1, 2])
pool = tf.squeeze(pool, axis=[1, 2])
return pool
else:
if num_channels_in != output_length:
conv_weight = tf.Variable(tf.truncated_normal([1, 1, num_channels_in, output_length], stddev=0.1, dtype=tf.float32))
conv = tf.nn.conv2d(input_data, conv_weight, strides=[1, 1, 1, 1], padding='SAME')
pool = tf.nn.avg_pool(conv, ksize=[1, height, width, 1], strides=[1, 1, 1, 1], padding=padding)
else:
pool = tf.nn.avg_pool(input_data, ksize=[1, height, width, 1], strides=[1, 1, 1, 1], padding=padding)
pool = tf.squeeze(pool, axis=[1, 2])
return pool
def avg_pool(input, scope, filter_dims, stride_dims, padding='SAME'):
assert (len(filter_dims) == 2) # filter height and width
assert (len(stride_dims) == 2) # stride height and width
filter_h, filter_w = filter_dims
stride_h, stride_w = stride_dims
with tf.variable_scope(scope):
pool = tf.nn.avg_pool(input, ksize=[1, filter_h, filter_w, 1], strides=[1, stride_h, stride_w, 1],
padding=padding)
return pool
def get_deconv2d_output_dims(input_dims, filter_dims, stride_dims, padding):
batch_size, input_h, input_w, num_channels_in = input_dims
filter_h, filter_w, num_channels_out = filter_dims
stride_h, stride_w = stride_dims
if padding == 'SAME':
out_h = input_h * stride_h
elif padding == 'VALID':
out_h = (input_h - 1) * stride_h + filter_h
if padding == 'SAME':
out_w = input_w * stride_w
elif padding == 'VALID':
out_w = (input_w - 1) * stride_w + filter_w
return [batch_size, out_h, out_w, num_channels_out]
def deconv(input_data, b_size, scope, filter_dims, stride_dims, padding='SAME', non_linear_fn=tf.nn.relu):
input_dims = input_data.get_shape().as_list()
# print(scope, 'in', input_dims)
assert (len(input_dims) == 4) # batch_size, height, width, num_channels_in
assert (len(filter_dims) == 3) # height, width and num_channels out
assert (len(stride_dims) == 2) # stride height and width
input_dims = [b_size, input_dims[1], input_dims[2], input_dims[3]]
num_channels_in = input_dims[-1]
filter_h, filter_w, num_channels_out = filter_dims
stride_h, stride_w = stride_dims
output_dims = get_deconv2d_output_dims(input_dims,
filter_dims,
stride_dims,
padding)
with tf.variable_scope(scope):
deconv_weight = tf.Variable(
tf.random_normal([filter_h, filter_w, num_channels_out, num_channels_in], stddev=0.1, dtype=tf.float32))
deconv_bias = tf.Variable(tf.zeros([num_channels_out], dtype=tf.float32))
map = tf.nn.conv2d_transpose(input_data, deconv_weight, output_dims, strides=[1, stride_h, stride_w, 1],
padding=padding)
map = tf.nn.bias_add(map, deconv_bias)
activation = non_linear_fn(map)
# print(scope, 'out', activation.get_shape().as_list())
return activation
def self_attention(x, channels, act_func=tf.nn.relu, scope='attention'):
with tf.variable_scope(scope):
batch_size, height, width, num_channels = x.get_shape().as_list()
f = conv(x, scope='f_conv', filter_dims=[1, 1, channels//8], stride_dims=[1, 1], non_linear_fn=act_func)
f = tf.layers.max_pooling2d(f, pool_size=2, strides=2, padding='SAME')
print('attention f dims: ' + str(f.get_shape().as_list()))
g = conv(x, scope='g_conv', filter_dims=[1, 1, channels//8], stride_dims=[1, 1], non_linear_fn=act_func)
print('attention g dims: ' + str(g.get_shape().as_list()))
h = conv(x, scope='h_conv', filter_dims=[1, 1, channels//2], stride_dims=[1, 1], non_linear_fn=act_func)
h = tf.layers.max_pooling2d(h, pool_size=2, strides=2, padding='SAME')
print('attention h dims: ' + str(h.get_shape().as_list()))
# N = h * w
g = tf.reshape(g, shape=[-1, g.shape[1]*g.shape[2], g.get_shape().as_list()[-1]])
print('attention g flat dims: ' + str(g.get_shape().as_list()))
f = tf.reshape(f, shape=[-1, f.shape[1]*f.shape[2], f.shape[-1]])
print('attention f flat dims: ' + str(f.get_shape().as_list()))
s = tf.matmul(g, f, transpose_b=True) # # [bs, N, N]
beta = tf.nn.softmax(s) # attention map
print('attention beta dims: ' + str(s.get_shape().as_list()))
h = tf.reshape(h, shape=[-1, h.shape[1]*h.shape[2], h.shape[-1]])
print('attention h flat dims: ' + str(h.get_shape().as_list()))
o = tf.matmul(beta, h) # [bs, N, C]
print('attention o dims: ' + str(o.get_shape().as_list()))
gamma = tf.get_variable("gamma", [1], initializer=tf.constant_initializer(0.0))
o = tf.reshape(o, shape=[-1, height, width, num_channels // 2]) # [bs, h, w, C]
o = conv(o, scope='attn_conv', filter_dims=[1, 1, channels], stride_dims=[1, 1], non_linear_fn=act_func)
x = gamma * o + x
return x