-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSEADNet.py
699 lines (532 loc) · 30.8 KB
/
SEADNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
# Adversarial Anomaly Detection
#
# Author: Seongho Baek
# Contact: seonghobaek@gmail.com
#
# ==============================================================================
import tensorflow as tf
from tensorflow.python.client import device_lib
from sae import StackedAutoEncoder
import numpy as np
import util
import argparse
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
input_feature_dim = 150
lstm_sequence_length = 20
lstm_hidden_size_layer1 = 128
lstm_hidden_size_layer2 = 128
lstm_feature_dim = lstm_hidden_size_layer1
lstm_z_sequence_dim = 32
lstm_linear_transform_input_dim = 2 * lstm_feature_dim
g_encoder_z_local_dim = 32
g_encoder_z_dim = lstm_z_sequence_dim + g_encoder_z_local_dim
g_encoder_input_dim = input_feature_dim
g_encoder_layer1_dim = 128
g_encoder_layer2_dim = 96
g_encoder_layer3_dim = 64
g_decoder_output_dim = input_feature_dim
g_decoder_layer2_dim = 96
g_decoder_layer1_dim = 128
d_layer_1_dim = 128
d_layer_2_dim = 96
d_layer_3_dim = 64
d_layer_4_dim = 32
num_block_layers = 3
dense_layer_depth = 16
# Pretraining Stacked Auto Encoder
def g_encoder_pretrain(input_data):
model = StackedAutoEncoder(dims=[g_encoder_layer1_dim, g_encoder_layer2_dim, g_encoder_layer3_dim], activations=['swish', 'swish', 'swish'],
epoch=[8000, 4000, 4000], loss_type='l1', lr=0.001, batch_size=32, print_step=200)
model.fit(input_data)
weights, biases = model.get_layers()
tf.reset_default_graph()
return weights, biases
def lstm_network(input, scope='lstm_network'):
with tf.variable_scope(scope):
lstm_cell1 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer1, forget_bias=1.0)
lstm_cell2 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer2, forget_bias=1.0)
lstm_cells = tf.contrib.rnn.MultiRNNCell(cells=[lstm_cell1, lstm_cell2], state_is_tuple=True)
# initial_state = lstm_cells.zero_state(batch_size, tf.float32)
_, states = tf.nn.dynamic_rnn(lstm_cells, input, dtype=tf.float32, initial_state=None)
# z_sequence_output = states[1].h
# print(z_sequence_output.get_shape())
states_concat = tf.concat([states[0].h, states[1].h], 1)
z_sequence_output = dense(states_concat, lstm_linear_transform_input_dim, lstm_z_sequence_dim, scope='linear_transform')
return z_sequence_output
def dense(x, n1, n2, scope='dense', initial_value=None, use_bias=True):
with tf.variable_scope(scope):
if initial_value is None:
weights = tf.get_variable("weights", shape=[n1, n2], initializer=tf.random_normal_initializer(mean=0., stddev=0.01))
bias = tf.get_variable("bias", shape=[n2], initializer=tf.constant_initializer(0.0))
else:
weights = tf.get_variable("weights", initializer=initial_value[0])
bias = tf.get_variable("bias", initializer=initial_value[1])
if use_bias:
out = tf.add(tf.matmul(x, weights), bias, name='matmul')
else:
out = tf.matmul(x, weights, name='matmul')
return out
def g_encoder_network(x, pretrained=False, weights=None, biases=None, activation='swish', scope='g_encoder_network', bn_phaze=False):
with tf.variable_scope(scope):
if activation == 'swish':
act_func = util.swish
elif activation == 'relu':
act_func = tf.nn.relu
else:
act_func = tf.nn.sigmoid
if use_random_noise:
#x = util.add_gaussian_noise(x, 0.0, 0.1)
x = util.add_uniform_noise(x, min_val=0.0, max_val=0.1)
if pretrained:
g_enc_dense_1 = act_func(dense(x, g_encoder_input_dim, g_encoder_layer1_dim, scope='g_enc_dense_1',
initial_value=[weights[0], biases[0]]))
g_enc_dense_1 = batch_norm(g_enc_dense_1, bn_phaze, scope='g_enc_dense1_bn')
g_enc_dense_2 = act_func(dense(g_enc_dense_1, g_encoder_layer1_dim, g_encoder_layer2_dim, scope='g_enc_dense_2',
initial_value=[weights[1], biases[1]]))
g_enc_dense_2 = batch_norm(g_enc_dense_2, bn_phaze, scope='g_enc_dense2_bn')
g_enc_dense_3 = act_func(
dense(g_enc_dense_2, g_encoder_layer2_dim, g_encoder_layer3_dim, scope='g_enc_dense_3',
initial_value=[weights[2], biases[2]]))
g_enc_dense_3 = batch_norm(g_enc_dense_3, bn_phaze, scope='g_enc_dense3_bn')
g_enc_z_local = dense(g_enc_dense_3, g_encoder_layer3_dim, g_encoder_z_local_dim, scope='g_enc_z_local')
else:
g_enc_dense_1 = act_func(dense(x, g_encoder_input_dim, g_encoder_layer1_dim, scope='g_enc_dense_1'))
g_enc_dense_1 = batch_norm(g_enc_dense_1, bn_phaze, scope='g_enc_dense1_bn')
g_enc_dense_2 = act_func(dense(g_enc_dense_1, g_encoder_layer1_dim, g_encoder_layer2_dim, scope='g_enc_dense_2'))
g_enc_dense_2 = batch_norm(g_enc_dense_2, bn_phaze, scope='g_enc_dense2_bn')
g_enc_dense_3 = act_func(dense(g_enc_dense_2, g_encoder_layer2_dim, g_encoder_layer3_dim, scope='g_enc_dense_3'))
g_enc_dense_3 = batch_norm(g_enc_dense_3, bn_phaze, scope='g_enc_dense3_bn')
g_enc_z_local = dense(g_enc_dense_3, g_encoder_layer3_dim, g_encoder_z_local_dim, scope='g_enc_z_local')
return g_enc_z_local
def g_decoder_network(x, activation='swish', scope='g_decoder_network', bn_phaze=False):
with tf.variable_scope(scope):
if activation == 'swish':
act_func = util.swish
elif activation == 'relu':
act_func = tf.nn.relu
else:
act_func = tf.nn.sigmoid
g_dec_dense_2 = act_func(dense(x, g_encoder_z_dim, g_decoder_layer2_dim, scope='g_dec_dense_2'))
g_dec_dense_2 = batch_norm(g_dec_dense_2, bn_phaze, scope='g_dec_dense2_bn')
g_dec_dense_1 = act_func(dense(g_dec_dense_2, g_decoder_layer2_dim, g_decoder_layer1_dim, scope='g_dec_dense_1'))
g_dec_dense_1 = batch_norm(g_dec_dense_1, bn_phaze, scope='g_dec_dense1_bn')
#g_dec_output = act_func(dense(g_dec_dense_1, g_decoder_layer1_dim, g_decoder_output_dim, scope='g_dec_output'))
g_dec_output = dense(g_dec_dense_1, g_decoder_layer1_dim, g_decoder_output_dim, scope='g_dec_output')
return g_dec_output
def r_encoder_network(x, activation='swish', scope='r_encoder_network', bn_phaze=False):
with tf.variable_scope(scope):
if activation == 'swish':
act_func = util.swish
elif activation == 'relu':
act_func = tf.nn.relu
else:
act_func = tf.nn.sigmoid
r_enc_dense1 = act_func(dense(x, g_encoder_input_dim, g_decoder_layer1_dim, scope='r_enc_dense_1'))
r_enc_dense1 = batch_norm(r_enc_dense1, bn_phaze, scope='r_enc_dense1_bn')
r_enc_dense2 = act_func(dense(r_enc_dense1, g_decoder_layer1_dim, g_decoder_layer2_dim, scope='r_enc_dense_2'))
r_enc_dense2 = batch_norm(r_enc_dense2, bn_phaze, scope='r_enc_dense2_bn')
r_enc_output = dense(r_enc_dense2, g_decoder_layer2_dim, g_encoder_z_dim, scope='r_enc_output')
return r_enc_output
def conv(input, scope, filter_dims, stride_dims, padding='SAME',
non_linear_fn=tf.nn.relu, bias=True):
input_dims = input.get_shape().as_list()
assert (len(input_dims) == 4) # batch_size, height, width, num_channels_in
assert (len(filter_dims) == 3) # height, width and num_channels out
assert (len(stride_dims) == 2) # stride height and width
num_channels_in = input_dims[-1]
filter_h, filter_w, num_channels_out = filter_dims
stride_h, stride_w = stride_dims
with tf.variable_scope(scope):
conv_weight = tf.Variable(
tf.truncated_normal([filter_h, filter_w, num_channels_in, num_channels_out], stddev=0.1, dtype=tf.float32))
conv_bias = tf.Variable(tf.zeros([num_channels_out], dtype=tf.float32))
map = tf.nn.conv2d(input, conv_weight, strides=[1, stride_h, stride_w, 1], padding=padding)
if bias is True:
map = tf.nn.bias_add(map, conv_bias)
if non_linear_fn is not None:
activation = non_linear_fn(map)
else:
activation = map
# print(activation.get_shape().as_list())
return activation
def fc(input, scope, out_dim, non_linear_fn=None):
assert (type(out_dim) == int)
with tf.variable_scope(scope):
input_dims = input.get_shape().as_list()
if len(input_dims) == 4:
_, input_h, input_w, num_channels = input_dims
in_dim = input_h * input_w * num_channels
flat_input = tf.reshape(input, [-1, in_dim])
else:
in_dim = input_dims[-1]
flat_input = input
fc_weight = tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=0.1, dtype=tf.float32))
fc_bias = tf.Variable(tf.zeros([out_dim], dtype=tf.float32))
output = tf.add(tf.matmul(flat_input, fc_weight), fc_bias)
if non_linear_fn is None:
return output
else:
activation = non_linear_fn(output)
return activation
def batch_norm_conv(x, b_train, scope):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
n_out = x.get_shape().as_list()[-1]
beta = tf.get_variable('beta', initializer=tf.constant(0.0, shape=[n_out]))
gamma = tf.get_variable('gamma', initializer=tf.constant(1.0, shape=[n_out]))
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.5)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(b_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
return normed
def add_dense_layer(layer, filter_dims, act_func=tf.nn.relu, scope='dense_layer', use_bn=True, bn_phaze=False):
with tf.variable_scope(scope):
l = act_func(layer)
if use_bn:
l = batch_norm_conv(l, b_train=bn_phaze, scope='bn')
l = conv(l, scope='conv', filter_dims=filter_dims, stride_dims=[1, 1], non_linear_fn=act_func, bias=False)
l = tf.concat([l, layer], 3)
return l
def avg_pool(input, scope, filter_dims, stride_dims, padding='SAME'):
assert (len(filter_dims) == 2) # filter height and width
assert (len(stride_dims) == 2) # stride height and width
filter_h, filter_w = filter_dims
stride_h, stride_w = stride_dims
with tf.variable_scope(scope):
pool = tf.nn.avg_pool(input, ksize=[1, filter_h, filter_w, 1], strides=[1, stride_h, stride_w, 1],
padding=padding)
return pool
def add_dense_transition(layer, filter_dims, act_func=tf.nn.relu, scope='transition', use_bn=True, bn_phaze=False):
with tf.variable_scope(scope):
l = act_func(layer)
if use_bn:
l = batch_norm_conv(l, b_train=bn_phaze, scope='bn')
l = conv(l, scope='conv', filter_dims=filter_dims, stride_dims=[1, 1], non_linear_fn=act_func, bias=False)
# l = avg_pool(l, scope='avgpool', filter_dims=[3, 3], stride_dims=[1, 1])
return l
def discriminator(x, activation='swish', scope='discriminator', reuse=False, bn_phaze=False, use_cnn=True):
with tf.variable_scope(scope):
if reuse:
tf.get_variable_scope().reuse_variables()
if activation == 'swish':
act_func = util.swish
elif activation == 'relu':
act_func = tf.nn.relu
else:
act_func = tf.nn.sigmoid
if use_cnn:
input = tf.reshape(x, shape=[-1, 5, 5, 6])
l = conv(input, scope='dc_conv1', filter_dims=[3, 3, 64], stride_dims=[1, 1], non_linear_fn=None, bias=False)
with tf.variable_scope('dense_block_1'):
for i in range(num_block_layers):
l = add_dense_layer(l, filter_dims=[3, 3, dense_layer_depth], act_func=act_func,use_bn=False, bn_phaze=bn_phaze,
scope='layer' + str(i))
l = add_dense_transition(l, filter_dims=[1, 1, dense_layer_depth], act_func=act_func,
scope='dense_transition_1',
use_bn=True,
bn_phaze=bn_phaze)
with tf.variable_scope('dense_block_2'):
for i in range(num_block_layers):
l = add_dense_layer(l, filter_dims=[3, 3, dense_layer_depth], act_func=act_func, use_bn=False, bn_phaze=bn_phaze,
scope='layer' + str(i))
l = add_dense_transition(l, filter_dims=[1, 1, dense_layer_depth], act_func=act_func,
scope='dense_transition_1',
use_bn=True,
bn_phaze=bn_phaze)
with tf.variable_scope('dense_block_3'):
for i in range(num_block_layers):
l = add_dense_layer(l, filter_dims=[3, 3, dense_layer_depth], act_func=act_func, use_bn=False,
bn_phaze=bn_phaze, scope='layer' + str(i))
l = add_dense_transition(l, filter_dims=[1, 1, dense_layer_depth], act_func=act_func, scope='dense_transition_1',
bn_phaze=bn_phaze)
with tf.variable_scope('dense_block_4'):
for i in range(num_block_layers):
l = add_dense_layer(l, filter_dims=[3, 3, dense_layer_depth], act_func=act_func, use_bn=False,
bn_phaze=bn_phaze, scope='layer' + str(i))
l = add_dense_transition(l, filter_dims=[1, 1, dense_layer_depth], act_func=act_func, scope='dense_transition_1',
bn_phaze=bn_phaze)
with tf.variable_scope('dense_block_5'):
for i in range(num_block_layers):
l = add_dense_layer(l, filter_dims=[3, 3, dense_layer_depth], act_func=act_func, use_bn=False,
bn_phaze=bn_phaze, scope='layer' + str(i))
last_dense_layer = add_dense_transition(l, filter_dims=[1, 1, dense_layer_depth], act_func=act_func,
scope='dense_transition_1', use_bn=True, bn_phaze=bn_phaze)
#dc_final_layer = batch_norm_conv(last_dense_layer, b_train=bn_phaze, scope='last_dense_layer')
dc_final_layer = last_dense_layer
dc_output = fc(dc_final_layer, scope='g_enc_z_fc', out_dim=1, non_linear_fn=None)
else:
dc_den1 = act_func(dense(x, input_feature_dim, d_layer_1_dim, scope='dc_dense_1'))
#dc_den1 = batch_norm(dc_den1, bn_phaze, scope='dc_den1_bn')
dc_den2 = act_func(dense(dc_den1, d_layer_1_dim, d_layer_2_dim, scope='dc_dense_2'))
#dc_den2 = batch_norm(dc_den2, bn_phaze, scope='dc_den2_bn')
dc_den3 = act_func(dense(dc_den2, d_layer_2_dim, d_layer_3_dim, scope='dc_dense_3'))
#dc_den3 = batch_norm(dc_den3, bn_phaze, scope='dc_den3_bn')
dc_den4 = act_func(dense(dc_den3, d_layer_3_dim, d_layer_4_dim, scope='dc_dense_4'))
#dc_den4 = batch_norm(dc_den4, bn_phaze, scope='dc_den4_bn')
dc_output = dense(dc_den4, d_layer_4_dim, 1, scope='dc_output')
dc_final_layer = dc_den4
return dc_final_layer, dc_output, tf.sigmoid(dc_output)
def batch_norm(x, b_train, scope, reuse=False):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
n_out = x.get_shape().as_list()[-1]
beta = tf.get_variable('beta', initializer=tf.constant(0.0, shape=[n_out]))
gamma = tf.get_variable('gamma', initializer=tf.constant(1.0, shape=[n_out]))
batch_mean, batch_var = tf.nn.moments(x, [0], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.5)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(b_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
return normed
def get_residual_loss(value, target, type='l1', gamma=1.0):
if type == 'rmse':
loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(target, value))))
elif type == 'cross-entropy':
eps = 1e-10
loss = tf.reduce_mean(-1 * target * tf.log(value + eps) - 1 * (1 - target) * tf.log(1 - value + eps))
elif type == 'l1':
loss = tf.reduce_mean(tf.abs(tf.subtract(target, value)))
elif type == 'l2':
loss = tf.reduce_mean(tf.square(tf.subtract(target, value)))
return gamma * loss
def get_feature_matching_loss(value, target, type='l1', gamma=1.0):
if type == 'rmse':
loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(target, value))))
elif type == 'cross-entropy':
eps = 1e-10
loss = tf.reduce_mean(-1 * target * tf.log(value + eps) - 1 * (1 - target) * tf.log(1 - value + eps))
elif type == 'l1':
loss = tf.reduce_mean(tf.abs(tf.subtract(target, value)))
elif type == 'l2':
loss = tf.reduce_mean(tf.square(tf.subtract(target, value)))
return gamma * loss
def get_conceptual_loss(value, target, type='l1', gamma=1.0):
if type == 'rmse':
loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(target, value))))
elif type == 'cross-entropy':
eps = 1e-10
# loss = -tf.reduce_mean(x_ * tf.log(decoded + eps))
loss = tf.reduce_mean(-1 * target * tf.log(value + eps) - 1 * (1 - target) * tf.log(1 - value + eps))
elif type == 'l1':
loss = tf.reduce_mean(tf.abs(tf.subtract(target, value)))
elif type == 'l2':
loss = tf.reduce_mean(tf.square(tf.subtract(target, value)))
return gamma * loss
def get_discriminator_loss(real, fake, type='wgan', gamma=1.0):
if type == 'wgan':
# wgan loss
d_loss_real = tf.reduce_mean(real)
d_loss_fake = tf.reduce_mean(fake)
# W Distant: f(real) - f(fake). Maximizing W Distant.
return gamma * (d_loss_fake - d_loss_real), d_loss_real, d_loss_fake
elif type == 'ce':
# cross entropy
d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=real, labels=tf.ones_like(real)))
d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=fake, labels=tf.zeros_like(fake)))
return gamma * (d_loss_fake + d_loss_real), d_loss_real, d_loss_fake
def train(pretrain=True):
b_wgan = True
with tf.device(gpus[1 % num_gpus]):
# Pretraining Stacked Auto Encoder
if pretrain:
stacked_auto_encoder_weights, stacked_auto_encoder_biases = g_encoder_pretrain(inlier_sample)
else:
stacked_auto_encoder_weights = None
stacked_auto_encoder_biases = None
bn_train = tf.placeholder(tf.bool)
g_encoder_input = tf.placeholder(dtype=tf.float32, shape=[None, input_feature_dim])
with tf.device(gpus[1 % num_gpus]):
# Z local: Encoder latent output
z_local = g_encoder_network(g_encoder_input, pretrained=pretrain,
weights=stacked_auto_encoder_weights, biases=stacked_auto_encoder_biases,
activation='swish', scope='G_Encoder', bn_phaze=bn_train)
with tf.device(gpus[2 % num_gpus]):
lstm_input = tf.placeholder(dtype=tf.float32, shape=[None, lstm_sequence_length, input_feature_dim])
# Z seq: LSTM sequence latent output
z_seq = lstm_network(lstm_input, scope='LSTM')
# z_seq = np.random.uniform(-1., 1., size=[batch_size, 32])
with tf.device(cpu):
z_enc = tf.concat([z_seq, z_local], 1)
with tf.device(gpus[3 % num_gpus]):
# Reconstructed output
decoder_output = g_decoder_network(z_enc, activation='swish', scope='G_Decoder', bn_phaze=bn_train)
with tf.device(gpus[4 % num_gpus]):
# Reencoding reconstucted output
z_renc = r_encoder_network(decoder_output, activation='swish', scope='R_Encoder', bn_phaze=bn_train)
with tf.device(gpus[5 % num_gpus]):
# Discriminator output
# - feature real/fake: Feature matching approach. Returns last feature layer
feature_real, d_real, d_real_output = discriminator(g_encoder_input, activation='swish', scope='Discriminator', use_cnn=True, bn_phaze=bn_train)
feature_fake, d_fake, d_fake_output = discriminator(decoder_output, activation='swish', scope='Discriminator', use_cnn=True, reuse=True, bn_phaze=bn_train)
# Trainable variable lists
d_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Discriminator')
r_encoder_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='R_Encoder')
g_encoder_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='G_Encoder')
g_decoder_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='G_Decoder')
lstm_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='LSTM')
generator_vars = lstm_var + g_encoder_var + g_decoder_var
conceptual_vars = g_decoder_var + r_encoder_var
# Joint loss term
residual_loss = get_residual_loss(decoder_output, g_encoder_input, type='l1', gamma=1.0)
feature_matching_loss = get_feature_matching_loss(feature_fake, feature_real, type='l2', gamma=1.0)
if b_wgan:
# WGAN
eps = tf.random_uniform([batch_size, 1], minval=0.0, maxval=1.0)
gp_input = eps * g_encoder_input + (1.0 - eps) * decoder_output
_, gp_output, _ = discriminator(gp_input, activation='swish', scope='Discriminator', use_cnn=True, reuse=True, bn_phaze=bn_train)
gp_grad = tf.gradients(gp_output, [gp_input])[0]
gp_grad_norm = tf.sqrt(tf.reduce_mean((gp_grad)**2, axis=1))
gp_grad_pen = 10 * tf.reduce_mean((gp_grad_norm - 1)**2)
gan_g_loss = -tf.reduce_mean(d_fake)
discriminator_loss, loss_real, loss_fake = get_discriminator_loss(d_real, d_fake, type='wgan', gamma=1.0)
discriminator_loss = discriminator_loss + gp_grad_pen
d_weight_clip = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in d_var]
else:
# Cross Entropy
gan_g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_fake, labels=tf.ones_like(d_fake)))
discriminator_loss, loss_real, loss_fake = get_discriminator_loss(d_real, d_fake, type='ce', gamma=1.0)
conceptual_loss = get_conceptual_loss(z_renc, z_enc, type='l2', gamma=1.0)
d_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(discriminator_loss, var_list=d_var)
g_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(residual_loss, var_list=generator_vars)
f_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(feature_matching_loss, var_list=generator_vars)
gan_g_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(gan_g_loss, var_list=generator_vars)
r_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(conceptual_loss, var_list=[conceptual_vars, generator_vars])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
try:
saver = tf.train.Saver()
saver.restore(sess, './model/seadnet/SEADNet.ckpt')
except:
print('Start New Training. Wait...')
num_itr = int(len(inlier_sample)/batch_size)
for epoch in range(num_epoch):
for itr in range(num_itr):
batch_x, batch_seq = util.get_sequence_batch(inlier_sample, lstm_sequence_length, batch_size)
if b_wgan:
_, _, d_loss, l_real, l_fake = sess.run(
[d_optimizer, d_weight_clip, discriminator_loss, loss_real, loss_fake],
feed_dict={g_encoder_input: batch_x, lstm_input: batch_seq, bn_train: True})
else:
_, d_loss, l_real, l_fake = sess.run([d_optimizer, discriminator_loss, loss_real, loss_fake],
feed_dict={g_encoder_input: batch_x,
lstm_input: batch_seq, bn_train: True})
_, f_loss = sess.run([f_optimizer, feature_matching_loss],
feed_dict={g_encoder_input: batch_x, lstm_input: batch_seq, bn_train: True})
_, g_loss = sess.run([gan_g_optimizer, gan_g_loss],
feed_dict={g_encoder_input: batch_x, lstm_input: batch_seq, bn_train: True})
_, r_loss = sess.run([g_optimizer, residual_loss],
feed_dict={g_encoder_input: batch_x, lstm_input: batch_seq, bn_train: True})
_, c_loss = sess.run([r_optimizer, conceptual_loss],
feed_dict={g_encoder_input: batch_x, lstm_input: batch_seq, bn_train: True})
if (itr + 1) % 50 == 0:
print('epoch: {0}, itr: {1}, l_real: {2}, l_fake: {3}'.format(epoch, itr, l_real, l_fake))
print('epoch: {0}, itr: {1}, d_loss: {2}, g_loss: {3}, r_loss: {4}, c_loss: {5}'.format(
epoch, itr, d_loss, g_loss, r_loss, c_loss))
try:
saver.save(sess, './model/seadnet/SEADNet.ckpt')
except:
print('Save failed')
def test(input_x, input_seq, num_itr):
stacked_auto_encoder_weights = None
stacked_auto_encoder_biases = None
tf.reset_default_graph()
bn_train = tf.placeholder(tf.bool)
g_encoder_input = tf.placeholder(dtype=tf.float32, shape=[None, input_feature_dim])
with tf.device(gpus[1 % num_gpus]):
# Z local: Encoder latent output
z_local = g_encoder_network(g_encoder_input,
weights=stacked_auto_encoder_weights, biases=stacked_auto_encoder_biases,
activation='swish', scope='G_Encoder', bn_phaze=bn_train)
with tf.device(gpus[2 % num_gpus]):
lstm_input = tf.placeholder(dtype=tf.float32, shape=[None, lstm_sequence_length, input_feature_dim])
# Z seq: LSTM sequence latent output
z_seq = lstm_network(lstm_input, scope='LSTM')
# z_seq = np.random.uniform(-1., 1., size=[batch_size, 32])
with tf.device(cpu):
z_enc = tf.concat([z_seq, z_local], 1)
with tf.device(gpus[3 % num_gpus]):
# Reconstructed output
decoder_output = g_decoder_network(z_enc, activation='swish', scope='G_Decoder', bn_phaze=bn_train)
with tf.device(gpus[4 % num_gpus]):
# Reencoding reconstucted output
z_renc = r_encoder_network(decoder_output, activation='swish', scope='R_Encoder', bn_phaze=bn_train)
# Trainable variable lists
r_encoder_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='R_Encoder')
g_encoder_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='G_Encoder')
g_decoder_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='G_Decoder')
lstm_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='LSTM')
generator_vars = lstm_var + g_encoder_var + g_decoder_var
conceptual_vars = g_decoder_var + r_encoder_var
# Joint loss term
residual_loss = get_residual_loss(decoder_output, g_encoder_input, type='l1', gamma=1.0)
conceptual_loss = get_conceptual_loss(z_renc, z_enc, type='l2', gamma=1.0)
g_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(residual_loss, var_list=generator_vars)
r_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(conceptual_loss, var_list=[conceptual_vars, generator_vars])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
try:
saver = tf.train.Saver()
saver.restore(sess, './model/seadnet/SEADNet.ckpt')
except:
print('Fail to load.')
return
r_loss_sum = []
c_loss_sum = []
for itr in range(num_itr):
_ = sess.run([g_optimizer], feed_dict={g_encoder_input: input_x, lstm_input: input_seq, bn_train: True})
_ = sess.run([r_optimizer], feed_dict={g_encoder_input: input_x, lstm_input: input_seq, bn_train: True})
r_loss, c_loss = sess.run([residual_loss, conceptual_loss], feed_dict={g_encoder_input: input_x, lstm_input: input_seq, bn_train: True})
r_loss_sum.append(r_loss)
c_loss_sum.append(c_loss)
r_loss_mean = np.mean(r_loss_sum)
c_loss_mean = np.mean(c_loss_sum)
return r_loss_mean, c_loss_mean
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train', help='Training mode', action='store_true')
parser.add_argument('--test', help='Test mode', action='store_true')
parser.add_argument('--noise', help='Add random noise', action='store_true')
parser.add_argument('--sae', help='Pretrain encoder', action='store_true')
parser.add_argument('--epoch', type=int, help='epoch count', default=1)
parser.add_argument('--batchsize', type=int, help='batch size', default=128)
args = parser.parse_args()
num_epoch = args.epoch
batch_size = args.batchsize
use_random_noise = args.noise
# Generate test sample
inlier_sample, outlier_sample = util.generate_samples(150, 100000, 100)
cpu = '/device:CPU:0'
gpus = [dev.name for dev in device_lib.list_local_devices() if dev.device_type == 'GPU']
num_gpus = len(gpus)
if num_gpus == 0: # No cuda supported gpu
num_gpus = 1
gpus = [cpu]
if args.train:
train(pretrain=args.sae)
elif args.test:
for i in range(10):
data_x, data_seq = util.get_sequence_batch(inlier_sample, lstm_sequence_length, 1)
scale = len(data_x[0])
recon_loss, concept_loss = test(data_x, data_seq, 20)
score = scale * (recon_loss + concept_loss)
print('Inlier Anomaly Score:', score, ', reconstruction loss:', recon_loss, ', conceptual loss:',
concept_loss)
out_x = data_x + np.random.normal(loc=0.0, scale=0.1, size=data_x.shape)
recon_loss, concept_loss = test(out_x, data_seq, 20)
score = scale * (recon_loss + concept_loss)
print('Outlier Anomaly Score:', score, ', reconstruction loss:', recon_loss, ', conceptual loss:', concept_loss)
print()
else:
print('Please set options. --train or -- test, for training with sae use --train --sae')