Skip to content

Latest commit

 

History

History
71 lines (50 loc) · 1.84 KB

README.md

File metadata and controls

71 lines (50 loc) · 1.84 KB

Adversarial Anomaly Detection

Unsupervised Adversarial Anomaly Detection

Task: Anomaly detection in multivariate time series variable.

  • About 150 features in 1 input sample per 1 sec.
  • t1: [f1, f2, ... , f150]
  • t2: [f1, f2, ... , f150]
  • ...
  • tn: [f1, f2, ... , f150]

SEADNet

  • Sequence Embedding, Anomaly Detection Network

Note) I assumed you have 2 GPUs. If not, change gpu setting code.

Stacked LSTM + Deep Auto Encoder + Adversarial Discriminator + Latent Reencoder

Input

  • Muti-variate time series (Feature dimension: 150, 1 Event per sec)

Output

  • Anomaly score

Stacked LSTM

  • Many to One
  • Create sequence latent for sequence anomaly
  • Sequence length: 20

Deep Auto Encoder

  • Create local anomaly latent

Decoder

  • Concat sequence latent and local latent
  • Reconstruct using concatenated latent variable

Test

  • Normal: mean 0.0, stdev 1.0, 100,000 samples, sigmoid standardazation for harder discrimination
  • Anomaly: mean 1.0, stddev 1.0, 100 samples, sigmoid standardazation for harder discrimination
  • Training only normal samples
  • Discriminate anomaly samples at test time

STADNet

  • Spatio-Temporal, Anomaly Detection Network

Note) I assumed you have 2 GPUs. If not, change gpu setting code.

1D/2D Convolution + Adversarial Discriminator

Input

  • Muti-variate time series (Feature dimension: 150, Window size: 20)
  • Reshape to [B, 150, 20, 1]

Output

  • Anomaly score

Deep Auto Encoder

  • Create local anomaly latent

Decoder

  • Concat sequence latent and local latent
  • Reconstruct using concatenated latent variable

Test

  • Normal: mean 0.0, stdev 1.0, 100,000 samples, sigmoid standardazation for harder discrimination
  • Anomaly: mean 1.0, stddev 1.0, 100 samples, sigmoid standardazation for harder discrimination
  • Training only normal samples
  • Discriminate anomaly samples at test time

Always welcome a nice idea: Code or Text what ever!