-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_finetune.py
113 lines (86 loc) · 3.79 KB
/
train_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# encoding:utf-8
import torch
import torchvision
import torch.optim as optim
import torchvision.transforms as transforms
import torch.nn as nn
import hbp_model
from torch.autograd import Variable
import data
from collections import OrderedDict
import os
import torch.backends.cudnn as cudnn
import math
from PIL import Image
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
trainset = data.MyDataset('train_images_shuffle.txt', transform=transforms.Compose([
transforms.Resize((600, 600), Image.BILINEAR),
transforms.RandomHorizontalFlip(),
# transforms.RandomVerticalFlip(),
transforms.RandomCrop(448),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
]))
trainloader = torch.utils.data.DataLoader(trainset, batch_size=16,
shuffle=True, num_workers=4)
testset = data.MyDataset('test_images_shuffle.txt', transform=transforms.Compose([
transforms.Resize((600, 600), Image.BILINEAR),
transforms.CenterCrop(448),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
]))
testloader = torch.utils.data.DataLoader(testset, batch_size=8,
shuffle=False, num_workers=4)
cudnn.benchmark = True
model = hbp_model.Net()
model.cuda()
pretrained = True
if pretrained:
pre_dic = torch.load('firststep.pth')
model.load_state_dict(pre_dic)
criterion = nn.NLLLoss()
lr = 1e-2
optimizer = optim.SGD([
{'params': model.features.parameters(), 'lr': lr},
{'params': model.proj0.parameters(), 'lr': lr},
{'params': model.proj1.parameters(), 'lr': lr},
{'params': model.proj2.parameters(), 'lr': lr},
{'params': model.fc_concat.parameters(), 'lr': lr},
], lr=0.01, momentum=0.9, weight_decay=1e-5)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(trainloader):
data, target = data.cuda(), target.cuda()
model.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR: {}'.format(
epoch, batch_idx * len(data), len(trainloader.dataset),
100. * batch_idx / len(trainloader), loss.data.item(),
optimizer.param_groups[0]['lr']))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in testloader:
data, target = data.cuda(), target.cuda()
output = model(data)
test_loss += criterion(output, target).data.item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(testloader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss * 8., correct, len(testloader.dataset),
100.0 * float(correct) / len(testloader.dataset)))
def adjust_learning_rate(optimizer, epoch):
if epoch % 40 == 0:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * 0.1
for epoch in range(1, 101):
train(epoch)
if epoch % 5 == 0:
test()
adjust_learning_rate(optimizer, epoch)