-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathdataset.py
95 lines (91 loc) · 3.2 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import os.path
import numpy as np
import random
import h5py
import torch
import cv2
import glob
import torch.utils.data as udata
from utils import data_augmentation
def normalize(data):
return data/255.
def Im2Patch(img, win, stride=1):
k = 0
endc = img.shape[0]
endw = img.shape[1]
endh = img.shape[2]
patch = img[:, 0:endw-win+0+1:stride, 0:endh-win+0+1:stride]
TotalPatNum = patch.shape[1] * patch.shape[2]
Y = np.zeros([endc, win*win,TotalPatNum], np.float32)
for i in range(win):
for j in range(win):
patch = img[:,i:endw-win+i+1:stride,j:endh-win+j+1:stride]
Y[:,k,:] = np.array(patch[:]).reshape(endc, TotalPatNum)
k = k + 1
return Y.reshape([endc, win, win, TotalPatNum])
def prepare_data(data_path, patch_size, stride, aug_times=1):
# train
print('process training data')
scales = [1, 0.9, 0.8, 0.7]
files = glob.glob(os.path.join(data_path, 'train', '*.png'))
files.sort()
h5f = h5py.File('train.h5', 'w')
train_num = 0
for i in range(len(files)):
img = cv2.imread(files[i])
h, w, c = img.shape
for k in range(len(scales)):
Img = cv2.resize(img, (int(h*scales[k]), int(w*scales[k])), interpolation=cv2.INTER_CUBIC)
Img = np.expand_dims(Img[:,:,0].copy(), 0)
Img = np.float32(normalize(Img))
patches = Im2Patch(Img, win=patch_size, stride=stride)
print("file: %s scale %.1f # samples: %d" % (files[i], scales[k], patches.shape[3]*aug_times))
for n in range(patches.shape[3]):
data = patches[:,:,:,n].copy()
h5f.create_dataset(str(train_num), data=data)
train_num += 1
for m in range(aug_times-1):
data_aug = data_augmentation(data, np.random.randint(1,8))
h5f.create_dataset(str(train_num)+"_aug_%d" % (m+1), data=data_aug)
train_num += 1
h5f.close()
# val
print('\nprocess validation data')
files.clear()
files = glob.glob(os.path.join(data_path, 'Set12', '*.png'))
files.sort()
h5f = h5py.File('val.h5', 'w')
val_num = 0
for i in range(len(files)):
print("file: %s" % files[i])
img = cv2.imread(files[i])
img = np.expand_dims(img[:,:,0], 0)
img = np.float32(normalize(img))
h5f.create_dataset(str(val_num), data=img)
val_num += 1
h5f.close()
print('training set, # samples %d\n' % train_num)
print('val set, # samples %d\n' % val_num)
class Dataset(udata.Dataset):
def __init__(self, train=True):
super(Dataset, self).__init__()
self.train = train
if self.train:
h5f = h5py.File('train.h5', 'r')
else:
h5f = h5py.File('val.h5', 'r')
self.keys = list(h5f.keys())
random.shuffle(self.keys)
h5f.close()
def __len__(self):
return len(self.keys)
def __getitem__(self, index):
if self.train:
h5f = h5py.File('train.h5', 'r')
else:
h5f = h5py.File('val.h5', 'r')
key = self.keys[index]
data = np.array(h5f[key])
h5f.close()
return torch.Tensor(data)