forked from longnguyen2706/two_stage_classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
split_data.py
162 lines (120 loc) · 5.2 KB
/
split_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import collections
import copy
import datetime
import os
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.utils import Bunch
from utils import current_date, dump_pickle, load_pickle
class MyDataset():
def __init__(self, directory, test_size, val_size):
self.directory = directory
self.filenames = None
self.labels = None
self.label_names = None
self.class_names = None
self.categories = None
self.test_size = test_size
self.val_size = val_size
def list_images(self):
self.labels = os.listdir(self.directory)
self.labels.sort()
files_and_labels = []
for label in self.labels:
for f in os.listdir(os.path.join(self.directory, label)):
# files_and_labels.append((os.path.join(self.directory, label, f), label)) # full path to image
files_and_labels.append((os.path.join(label, f), label)) # only dir/imagename
self.filenames, self.labels = zip(*files_and_labels)
self.filenames = list(self.filenames)
self.labels = list(self.labels)
self.label_names = copy.copy(self.labels)
unique_labels = list(set(self.labels))
unique_labels.sort()
label_to_int = {}
for i, label in enumerate(unique_labels):
label_to_int[label] = i
self.labels = [label_to_int[l] for l in self.labels]
self.class_names = unique_labels
self.categories = list(set(self.labels))
return
def get_data(self):
self.list_images() # get image list
dataset = Bunch(
data=np.asarray(self.filenames),
label_names=np.asarray(self.label_names), labels=np.asarray(self.labels),
DESCR="Dataset"
)
print('dataset size: ', dataset.data.shape)
# print(dataset.label_names)
train_files, test_files, train_labels, test_labels, train_label_names, test_label_names \
= train_test_split(dataset.data, dataset.labels, dataset.label_names, test_size=self.test_size)
train_files, val_files, train_labels, val_labels, train_label_names, val_label_names \
= train_test_split(train_files, train_labels, train_label_names, test_size=self.val_size)
print('train size: ', train_labels.shape)
return train_files, train_labels, train_label_names, \
val_files, val_labels, val_label_names, \
test_files, test_labels, test_label_names, self.class_names
def data_split_report(self, label_names, set_name):
class_freq = collections.Counter(label_names)
print_split_report(set_name, class_freq)
return class_freq
def print_split_report(set_name, class_freq):
print ("class freq for set %s "% set_name)
print('*********')
for key in sorted(class_freq):
print( "%s: %s" % (key, class_freq[key]))
print("-----------------------------------")
return
'''
Since dict is unordered -> need to
'''
def gen_data_pool(dataset_name, dataset_dir, path, test_size=0.2, val_size=0.25, pool_size=30):
now = datetime.datetime.now()
date = current_date(now)
pool = {}
pool_name = dataset_name+'_split_'+str(pool_size)+'_'+str(date)
pool['pool_name'] = pool_name
pool['data'] = {}
for i in range (pool_size):
print ("Generate dataset split %sth"% str(i+1))
dataset = MyDataset(dataset_dir, test_size, val_size)
train_files, train_labels, train_label_names, \
val_files, val_labels, val_label_names, \
test_files, test_labels, test_label_names, class_names = dataset.get_data()
train_report = dataset.data_split_report(train_label_names, 'train')
val_report= dataset.data_split_report(val_label_names, 'val')
test_report = dataset.data_split_report(test_label_names, 'test')
data_i = {}
data_i['data_name'] = dataset_name+'_'+str(i) +'_' + date
data_i['train_files'] = train_files
data_i['train_labels'] = train_labels
data_i['train_label_names'] = train_label_names
data_i['train_report'] = train_report
data_i['test_files'] = test_files
data_i['test_labels'] = test_labels
data_i['test_label_names'] = test_label_names
data_i['test_report'] = test_report
data_i['val_files'] = val_files
data_i['val_labels'] = val_labels
data_i['val_label_names'] = val_label_names
data_i['val_report'] = val_report
data_i['class_names'] = class_names
pool['data'][str(i)]=data_i
print ('Appended split %sth to pool' %str(i+1))
print('____________________________________')
# dump to file
path = os.path.join(path, pool_name)
filepath = dump_pickle(pool, path)
return pool, filepath
def main():
# need to change dir to your appropriate dir
pool, filepath = gen_data_pool('Hela', '/mnt/6B7855B538947C4E/Dataset/JPEG_data/Hela_JPEG', '/home/long/Desktop/')
print (filepath)
# test the result
dict = load_pickle(filepath)
# print (dict)
split_1= dict['data']['0']
train_report = split_1['train_report']
print_split_report('train', train_report)
if __name__ == '__main__':
main()