-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
237 lines (198 loc) · 8.84 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Lint as: python3
"""
Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/main/setup.py
To create the package for pypi.
1. Run `make pre-release` (or `make pre-patch` for a patch release) then run `make fix-copies` to fix the index of the
documentation.
If releasing on a special branch, copy the updated README.md on the main branch for the commit you will make
for the post-release and run `make fix-copies` on the main branch as well.
2. Unpin specific versions from setup.py that use a git install.
3. Checkout the release branch (v<RELEASE>-release, for example v4.19-release), and commit these changes with the
message: "Release: <RELEASE>" and push.
4. Wait for the tests on main to be completed and be green (otherwise revert and fix bugs)
5. Add a tag in git to mark the release: "git tag v<RELEASE> -m 'Adds tag v<RELEASE> for pypi' "
Push the tag to git: git push --tags origin v<RELEASE>-release
6. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level directory.
(this will build a wheel for the python version you use to build it).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions.
Long story cut short, you need to run both before you can upload the distribution to the
test pypi and the actual pypi servers:
python setup.py bdist_wheel && python setup.py sdist
8. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest
(pypi suggest using twine as other methods upload files via plaintext.)
You may have to specify the repository url, use the following command then:
twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi dyffusion
If you are testing from a Colab Notebook, for instance, then do:
pip install dyffusion && pip uninstall dyffusion
pip install -i https://testpypi.python.org/pypi dyffusion
Check you can run the following commands:
python -c "python -c "from dyffusion import __version__; print(__version__)"
python -c "from dyffusion import *"
9. Upload the final version to actual pypi:
twine upload dist/* -r pypi
10. Prepare the release notes and publish them on github once everything is looking hunky-dory.
11. Run `make post-release` (or, for a patch release, `make post-patch`). If you were on a branch for the release,
you need to go back to main before executing this.
"""
import re
# Import command from setuptools instead of distutils.core.Command for compatibility with Python>3.12
from setuptools import Command, find_packages, setup
# IMPORTANT:
# 1. all dependencies should be listed here with their version requirements if any
# 2. once modified, run: `make deps_table_update` to update src/dyffusion/dependency_versions_table.py
_deps = [
"black",
"boto3",
"cachey",
"dacite",
"dask",
"einops",
"h5py",
"hf-doc-builder",
"huggingface_hub",
"hydra-core",
"isort",
"netCDF4",
"numpy",
"omegaconf",
"pytest",
"pytorch-lightning>=2.0",
"rich",
"ruff>=0.0.241",
"regex",
"requests",
"tensordict",
"tensorly",
"tensorly-torch",
"torch>=1.8",
"torch-harmonics",
"transformers",
"urllib3",
"wandb",
"xarray",
# "xbatcher",
# nvidia-modulus@git+https://github.com/ai2cm/modulus.git@94f62e1ce2083640829ec12d80b00619c40a47f8
]
# this is a lookup table with items like:
#
# packaging: "packaging"
#
# some of the values are versioned whereas others aren't.
deps = {b: a for a, b in (re.findall(r"^(([^!=<>~]+)(?:[!=<>~].*)?$)", x)[0] for x in _deps)}
# since we save this data in src/dependency_versions_table.py it can be easily accessed from
# anywhere. If you need to quickly access the data from this table in a shell, you can do so easily with:
#
# python -c 'import sys; from dyffusion.dependency_versions_table import deps; \
# print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets
#
# Just pass the desired package names to that script as it's shown with 2 packages above.
#
# If dyffusion is not yet installed and the work is done from the cloned repo remember to add `PYTHONPATH=src` to the script above
#
# You can then feed this for example to `pip`:
#
# pip install -U $(python -c 'import sys; from dyffusion.dependency_versions_table import deps; \
# print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets)
#
def deps_list(*pkgs):
return [deps[pkg] for pkg in pkgs]
class DepsTableUpdateCommand(Command):
"""
A custom distutils command that updates the dependency table.
usage: python setup.py deps_table_update
"""
description = "build runtime dependency table"
user_options = [
# format: (long option, short option, description).
("dep-table-update", None, "updates src/dependency_versions_table.py"),
]
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
entries = "\n".join([f' "{k}": "{v}",' for k, v in deps.items()])
content = [
"# THIS FILE HAS BEEN AUTOGENERATED. To update:",
"# 1. modify the `_deps` dict in setup.py",
"# 2. run `make deps_table_update``",
"deps = {",
entries,
"}",
"",
]
target = "src/dependency_versions_table.py"
print(f"updating {target}")
with open(target, "w", encoding="utf-8", newline="\n") as f:
f.write("\n".join(content))
extras = {} # defaultdict(list)
extras["quality"] = deps_list("urllib3", "black", "isort", "ruff", "hf-doc-builder")
extras["docs"] = deps_list("hf-doc-builder")
extras["test"] = deps_list("pytest")
extras["run"] = deps_list("xarray", "netCDF4", "dask", "einops", "hydra-core", "wandb")
extras["torch"] = deps_list("torch", "pytorch-lightning", "tensordict", "torch-harmonics")
extras["train"] = extras["torch"] + extras["run"]
extras["optional"] = deps_list("rich")
extras["dev"] = deps_list(*[x.split("<")[0].split(">")[0] for x in _deps])
install_requires = [
deps["numpy"],
deps["regex"],
deps["requests"],
]
setup(
name="spherical_dyffusion",
version="0.0.1", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="Probabilistic Emulation of a Global Climate Model with Spherical DYffusion",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
author="Salva Rühling Cachay",
author_email="salvaruehling@gmail.com",
# url="https://github.com/Rose-STL-lab/spherical-dyffusion",
license="Apache 2.0",
package_dir={"": "src"},
packages=find_packages("src"),
include_package_data=True,
# python_requires=">=3.8.0",
# install_requires=list(install_requires),
extras_require=extras,
classifiers=[
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
keywords="machine learning climate modeling dyffusion forecasting spatiotemporal probabilistic diffusion model",
zip_safe=False, # Required for mypy to find the py.typed file
cmdclass={"deps_table_update": DepsTableUpdateCommand},
)
# Release checklist
# 1. Change the version in __init__.py and setup.py.
# 2. Commit these changes with the message: "Release: Release"
# 3. Add a tag in git to mark the release: "git tag RELEASE -m 'Adds tag RELEASE for pypi' "
# Push the tag to git: git push --tags origin main
# 4. Run the following commands in the top-level directory:
# python setup.py bdist_wheel
# python setup.py sdist
# 5. Upload the package to the pypi test server first:
# twine upload dist/* -r pypitest
# twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
# 6. Check that you can install it in a virtualenv by running:
# pip install -i https://testpypi.python.org/pypi dyffusion
# dyffusion env
# dyffusion test
# 7. Upload the final version to actual pypi:
# twine upload dist/* -r pypi
# 8. Add release notes to the tag in github once everything is looking hunky-dory.
# 9. Update the version in __init__.py, setup.py to the new version "-dev" and push to master