-
Notifications
You must be signed in to change notification settings - Fork 3
/
GNAT.CalculateGradientTool.pyt.xml
355 lines (355 loc) · 31.6 KB
/
GNAT.CalculateGradientTool.pyt.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
<metadata xml:lang="en"><Esri><CreaDate>20170712</CreaDate><CreaTime>14075700</CreaTime><ArcGISFormat>1.0</ArcGISFormat><SyncOnce>TRUE</SyncOnce><ModDate>20171019</ModDate><ModTime>21245100</ModTime><scaleRange><minScale>150000000</minScale><maxScale>5000</maxScale></scaleRange><ArcGISProfile>ItemDescription</ArcGISProfile></Esri><dataIdInfo><idCitation><resTitle>Calculate Gradient</resTitle></idCitation><idAbs><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The </SPAN><SPAN STYLE="font-weight:bold;">Calculate Gradient</SPAN><SPAN> tool calculates the elevation gradient for each stream reach feature within a drainage network. The tool plots beginning and end points for per reach feature, extracts the elevation for each point from an elevation raster (i.e. DEM), subtracts the elevation values of the end point from the beginning point for the elevation change value. That value is then divided by the reach length to calculate the elevation gradient.</SPAN></P></DIV></DIV></DIV></idAbs><idCredit>Jesse Langdon, South Fork Research, Inc.</idCredit><searchKeys><keyword>stream</keyword><keyword>network</keyword><keyword>gradient</keyword><keyword>elevation</keyword></searchKeys></dataIdInfo><distInfo><distributor><distorFormat><formatName>ArcToolbox Tool</formatName></distorFormat></distributor></distInfo><tool name="CalculateGradientTool" displayname="Calculate Gradient" toolboxalias="GNAT" xmlns=""><parameters><param name="InputFCStreamNetwork" displayname="Input Stream Network" type="Required" direction="Input" datatype="Feature Class" expression="InputFCStreamNetwork"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Input stream network polyline feature class.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="InputDEM" displayname="Elevation (DEM) Raster Dataset" type="Required" direction="Input" datatype="Raster Dataset" expression="InputDEM"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Raster dataset representing elevation values (i.e. DEM).</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="RiverscapesBool" displayname="Is this a Riverscapes Project?" type="Optional" direction="Input" datatype="Boolean" expression="{RiverscapesBool}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Indicates if this process is part of an existing Riverscapes project.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="projectXML" displayname="GNAT Project XML" type="Optional" direction="Input" datatype="File" expression="{projectXML}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>XML file which stores information on the associated Riverscapes project.</SPAN></P></DIV></DIV></dialogReference></param><param name="realization" displayname="Realization Name" type="Optional" direction="Input" datatype="String" expression="{realization}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Please select an existing realization name from the Riverscapes project.</SPAN></P></DIV></DIV></dialogReference></param><param name="analysisName" displayname="Segmentation Name" type="Optional" direction="Input" datatype="String" expression="{analysisName}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Select a Riverscape analysis associated with this realization.</SPAN></P></DIV></DIV></dialogReference></param><param name="attributeAnalysisName" displayname="Attribute Analysis Name" type="Optional" direction="Input" datatype="String" expression="{attributeAnalysisName}"><dialogReference><DIV STYLE="text-align:Left;"><P><SPAN>Name for the attribute analysis which will be generated by </SPAN><SPAN STYLE="font-weight:bold;">Calculate Gradient </SPAN><SPAN>tool.</SPAN></P></DIV></dialogReference></param></parameters><summary><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The </SPAN><SPAN STYLE="font-weight:bold;">Calculate Gradient</SPAN><SPAN> tool calculates the elevation gradient for each stream reach feature within a drainage network. The tool plots beginning and end points for per reach feature, extracts the elevation for each point from an elevation raster (i.e. DEM), subtracts the elevation values of the end point from the beginning point for the elevation change value. That value is then divided by the reach length to calculate the elevation gradient.</SPAN></P></DIV></DIV></DIV></summary></tool><mdHrLv><ScopeCd value="005"/></mdHrLv><Binary><Enclosure rel="side-panel-help"><Data EsriPropertyType="Image" OriginalFileName="thumbnail.jpg">/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK
CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFvAZADASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDDk9BU
EnpUrdKi68mvzw+mGouWq2i8VXj9am8wL1oGSUwtSecPWlyG96YhjMfWoWGanZabtpDIlj71KrbR
SHA7802mIlE2KkSYN7VU7+lTQr75p2AuJV2Bu1UYvSrUTYqQNCFquxNWbG1W436VDGX1arKN0NUY
271ahbtWTJNCJulXI24+lZsT9quQtxWTAuK1Sq3Y1XVuMVIp3LWQhZM1UlHUmrLSHHPNVZm3UguV
WznNQt1NTSd6gfgGqQIryngms+c9BV6c/LWdM3zH6VaGUZT8341GfvGpH5aov4jWqAtQLVtI92Kr
W4rQgStAJoYcVbWOlgjqztC+5qWwK/le1MaM1OzUwqTU3ArtGfSoHX2xVxlPpUbDrmi4yk6496pz
r1rRkT0qjMvX1qkxGTcL1qlJWncL1rOmHNaJlFK4XOax76HvW64ytZt5FlTWiEc83yPT/vLS3Ue1
qIulbxGQSr3qI/MCDVqReoqs3FaICD1FRSLlankHOfWo2H61oM75iW69KhSeObeI5FfYxV9rA7SO
oPoah1VbybTbpNPligvWiZYJZlLIjkcMQOoB7V4x8P8AQtUm8C+O9Nt9clhuE168S61JowZ5UVF8
wrzhHbGN3O3JIyQK5YU1KMpN2sZuVmlbc9rfULWG1W4kuIkt2wRKzgKc9OelMuL6G32NNPHCrnCb
3ADH0GetePBvDOm/BHwfrfie2XUINO05PstjKN6XEzx7VXyzw7dcEj5eTx1rB1fQtO8K/CDQm8U6
c2q+KJ7CTTNL0uYeaUkmcsgRD91kBQFuo2hQegrqWGV2rve23rt+F+1zFVbpPur/AJf18j6HTNSC
vDLv4g+MPBNnfaYtvpV8PDWj2NzezXhlM0xMeJEUq2C2RwxHGOQ2eO+8F+MtY1jxNrGkaxaWUDW9
vb3tu1mztiKYNhJC3V128kAA+lZzw8opyTuio1E7JqzO2/GjbQGDdqNwrmNhMYpGoLAd6jaSgAY8
4qeBsVVDc1YiamBcU1OrcZqpG3apkapYF2KTirUT1nq201YSSoYzUikqzG22s2GSr0bbh71mIvRt
yD2q3HJyKz4m7VZjesWBpRvx71MGqlC/51YU/lWbESMaryVK2RVeRiagViCQ5b2qCQ84qdhVd+tM
ZVuD2rPmPWrsrdTWfOflrQCq3U1EvUfWnk/KTSJ94Vqhl62HStO3XpWfbjpWnbdqoRoQjAzSM244
oDfIKZmsxjvYU7bTFqWP1NIBvl7u1Mkh46VZ3UxqVwM2aPGcVSmXd9a1Zl3D3rOuFxmncDKuF61m
TL1rYuFzzWZcLWqYFFutVbiPirbjr+dQyjK5rVDOevoevFUY/lbFbV7HkGseVdrGtosB7DctVpV7
1aQ7lqKReorZCKbDKkVH1Wpm61G4w2a0RR1MPiLSZ4yyalakZx80yr/M1Q0XwRZeHrbW4IJbpk1a
8mvZ/OZSVeUAMEwowBjjOT7muWuvg1qKyAW1/aypjlpg8Zz9AG4/GspfAfijSj5sFtJE7fITbzru
x1wcN04r9CXDmR4lP6nmcVfpNJX+9xf4Hwn9tZpQa+s4Fvzi7/kn+ZU+J+g+CPB+g+FYtd8Ratpq
aCh/syG0eJ55mUDDlDEwLDaAGIVQT1Ga5Xw74o8BfEnxVpU//CXeLNO16yj+y2U2ptaxtJvZiSpW
N0DfNtydpI2gZwa8T+Mdxq8nxB1ODWWmNzalYUSd9xSPG5QD6Hdu/wCBVxSsVYEHBHIIrwfqEYc0
fac2rs1t6r1PbWKc4xkoct0tH+T9D77uvhTpeoQ60t3f6ncSaxYw2F1NJLHvKRggMMR4DnJycEeg
Fbum+FbPS9eu9Xhkna6ubWCzdXZSgSLdtIAUHPzHPP4CuF+HXxXS48H6L/bMdwbw2sIkuFw/mHaM
u2cEHoeM5ya7a18a6LenCahGhyf9dmPt6tiuXFZHm+GV6lCXL3Sureqv0NKOa5fWdo1Y83Zuz/H0
MzXFTxBrl5bXMjrpWmW/mTqrFQ0hGR+Q/Ue9afg+4uJvDNhJdMzTMh+ZjyV3HaSf93FYV5oepzXG
pW1t5J0/UphM95vG5UPJXHf+Rz78XNa1yHT9H1WztVYSWNvHH04UPhVwfUA5r6PGUY46jh8uwklJ
c0NteSLUYty7Oc5NyW+iv0PIw9R4evVxuITjpLf7Tu5JLuowjo9tXbqT2/jS3utRSBbeYWssphiv
CP3buOw9j61tG4TzjEHUyhdxTIyB649K4+OzVtT0HSIcFLGP7VOyn+LHH5tz9GpfEGnw61rCwWCM
NSjIaa8jcqIVxgA+pI7Dnjr1rhxGVYGtiIQpN0oODk38Sj7zUXK7VuaNm7X1a5U72Oijj8VToznU
tOSkkltd2TcY2TvyvRX7O70udisnNW4mzXMjXtN0ONbW91ISXMKgSMwJYn8BXSx8AH+YxXyFfCV8
NaVSDUZbNppSXdXWvT7z6KjiKVa8YSTkt1dNrydiyvWpkaoUPFPU4rkOgshsipI5DVcNT855FQI0
IZKvwyYrHikq/bydKzaGakbVaVuhrPiarcTdqyYi9E/Q1cjas2J+atRv2z9KyYFz2qKRaUNuFI7n
FQIry+lVJvu1ZkNUrhu1NAVZm4NZ1wetXZjzWfM1WhkDfdoj+9TZG+aoxLt+taxEbFv2rRt2rCtZ
dxHNa0Enyg0wNIN8opFaoo3zxShvmrMZYU5FTL90VXQ1Ov3aTAU0KN2c0jU5T8tQIjmjBBxxWZdD
r61qvWbdDBahAZM3cVn3C5q/Nw1VLitUMy5BjNQt3FWphVVuK2iMoXKZzWPdR1u3C1m3UfWtUBmx
nHFOkG4ZpjDa1SryK2TApyrzn1qFhlTVyVOoqq1aoEemlKY0dW2jDVG0f41xCPFvjV+zvYfFW4XV
LS8/snXI4vL81k3xTgA7Q4HIweNwzgdjgV5x4J/Y3uLTVEuPFerWk9pE6stpppdvO7kO7qu0dOgO
cnkd/qto6jZfxrup4yvShyRloYToU6kuZo4i/wDhjod1zDA9lweLd8L7fKcgAdgMCsHUPhH8pNjq
HzYGEuE4PPPzDpx7V6gU9KiZR3GK+gwvFec4SyhiG0ukve/O7PHxGQ5bibudFJvtp+Vjxabwr4m8
P5aBJ9inO6zkLA54zgc/pUtv8RL3yWt9StYr+FgVdWHlswOfQY9O3b8a9edfyrM1TQbHVo2W7tY5
wf4iMOOnRhyOg/KvpqfGGGxsl/a+DjNr7cPdkvR3vf0lE8WXDtfCpvLcS4/3Zaxf6femcx4a1bw+
0M1vpTLpd1MOPtAJbd0GCT82D/Dnv9a39G0iLQ9OERcM3LzTvwXbqWJP9e1cXrnwvljYyaXL5y8/
uJiFYfRuh/HFY2l+LL/RWexv0a6s87JbW5BLKD1AzyPoeK9KtklDPKUquUYt1E2pThL49NN3Zuyv
ZS07SOOlmlTKqkaeZ4dQsmoyj8Ouuy09WtfI6/TY7XXtWfXLhYrbSrViLZpAEErZ5kYn36e/0OYB
4sv5rtLiHULaVHvfsyaXGqs7JnG/cOfx6fypby5tte0vTZdMgN3ZWMqtcaeo+fGBgbT97HPqDz71
reGbGR9S1DVbqySye62CGEqN6IBjJ9CeMj1FcGIqUMPh6lfF002lyxhLlvBJtKFneXM0/aSmkuln
7x10o1q1SFLDz+J80pxvaV1fmurK0WuRRbfmtDp1bafapd1V91KrkV+WH3hYV8dakjbFVt26pI22
0rCLyNVuFvSs+Nu1WYX7VDA1YZOlXI2rKhkq7HJurJoRoRt0NWo23d6z4pKsLJtrJoDQSToaVn3C
qqydxT9wI4rMQ2VtuapSN3qzJVSZuooApzNwazpGy1XLpu1Z8jdatDIZHquz/NTpXxUKMDIK1QGt
YqeCa1ojjisqzkGBitGNuKYFxWxU27PSqQfv3qSOT8qhoRdjkqdH7VRD46GpFkqBlzdSCXbVfzvW
mmWpEWzIuOtZ94+Sac01U7iagClM3JqrMelTSHLVBJy1WhlKVc1VdefrV6T7tVJhj862QIqSjK1R
nTK1ov3qpIua0GYtxHg5qOM9qu3MfWqP3WraIx0i96qTLz9avdRVaVcg+taoR6kY/wAKjZT9avtH
+NQtD7Yrh5gKZHrUbR+lXGiP1qJkxVXEUXjqFvQirsi9jUDx0xlZo/xqCRPSrbKVqJk9Kq4imy5+
tYviDwzZeIocXEYSdRhLhR8y9cfUZOcVvulQuufY114bFV8HVVfDzcZLZoxrUaWJpulWipRfRngn
iLXJ/hFdPfXjmLyztXaMi4B6KBkbgcfhjtiseP8AbItTehZPC0y2meZFvQZMY/u7AP8Ax6l/bGt7
ttP8MzhWNlHLOjMBwsjBCoP1Ctj6GvmGvvMdmC4ijTxGJppTSs2uvm/0XQ+YweBeTOdGjNuLd0n0
/rq+p+ivhHxdpvjbQbbV9Kn8+znHGRh0YdUYdmB6/pkEGto89K+dv2PGmXw/4hSR/wBw1zG0MZPf
aQ7Af98DNe76xrEOh2L3U2SAdqovV2PRRXxtTA1XilhaMW5O1l3vqv8Ahz6OniYew9vUdkr3foaS
sVNTq26vONXk1L7GLy91C5tdRuGAstNtH2gHI4b198/1xXfWPmpbw+eQZ9i+YV6Fsc4/GunMMr+o
UqdX2qnzXWl/s2u03uru3MtG07bHNhMd9bqShyOPKk9bdb2uuj62etmrmjG3arKt3qkrdxViN68J
npl6N6uQvWbG201aifFZNDNOOSplfjFUY5KnVvyrNoRdSTbUnmfnVVW4xSNJjrWTQE8khPeqk0m0
UkkvvVWaT8aVgILiTdVKZqmmbGSapSN61aEQTPtFVfO+bFOuJKqI2ZBmtUijesWyAQa1o5PlrHsm
G0Yq+snpVNDL6yelSBu4qokg9eKmWSoJLKSY9xUm/uDVXd6U4Me1Q0In8001pPeovMB9qaSPWpGP
aQ+v61XkansPwqNsUAQN3NV2bqankbPAqu3NUhEL1Vm6Grb/AKVVk6GrGVm61XkGKsv1qCTkmtRl
C5j4JrMlXDGtuZdwrKuY8GrQIiT7vuKZKO9PXr9aGXqK2QHr7R/jUTR/hWk8R+tQSQ8+ledckz2j
qKSL8autGR/9aomX1qrjM2SKq7DHvWlKlU5Y6tMZy/jjxMPCPh+41BLSfULrBS2s7dCzTSkEqvH3
V4JZjwFBPavNfEnxqv8AQ/hf4c1qKxjudc1a3t7h0WFzbW6M6K7t82QMuFUbsksOuDXr+sQSXGl3
sMa7pZIHRVzjJKkAV5PrngfW7v8AZ50rw3FYs+tQ29iklp5iAho5o2cbidvAVu/au7D+zbXOvtR+
7W/y7mNTm+z2l9+lv+AP8dfE/VdD1vXI9Nt7J7Dw9Z297qIuVcyziV8bIiCAhCBjkhsnAwOtUNa+
KesWnjK8treDT/7JstUsdLkt5Vf7XObhS3mIdwAA4wNpyAxyMUvxC8Ca/ea94pXTNPN7a+KNPtbI
3SzIgsmjchzIGIJXYxI2hiSMYHWszXvh1rk/ja/uIdF+0Xc2qWV1p/iL7RGBZWsQAeIqW3jhWG1V
Ibfk42iuqmqNo3tt+qv+v6bGM3NXt/Wjt+J0nijxp8PfFEN54c1rV9PnVmkjntZ5ChRo8lstxtIw
cHI6cZry7w7+zH4K8URpqmleJ77UNGd2CrF5e/jjaX28EH1UcfXNdhb/AA91hEtDJpg3J44l1d8v
GcWxVtsvX1xx972rpvhjoGoeH7fxIuoW5tjda5dXcALq2+Jyu1uCcZweDz7VUZ+wg3RnZ6dvL+vk
Nx9rJKcdP+H/AMvxONuPCdz8OjbxWI+z2kfywS2+QOucH37kHOeeTXaWOqJ480+CIXAsNVtZFnGF
3KSP4gD1HPTtXVX1lBqNq8FxGJYXGGU/z9j715Rrmj3Pg/WYnhkYpnzIJsEZ55U47jv7EetfrWV5
jR4opRoVbU8ZTT5JWVpK1mmrWato47W1XVH55j8HVyGpKtC88NUfvRbd0+9979n8n0Z3mh2dhb6r
fT3Wof2hqkAzNNKNqxLzwo6DvnHT2qO68Xald293e6Zb28em2yMftN7uHnEdkA9+Of06Ul5cP4u8
IiWxRWmkdDcQKwUvt+8mc8diM9sVDLayX11YJrSx6Xp/mCO10yNt3mMOm4jjHT8+2efDp0aEqssR
j1zVItpwk03FQSuowjy35tbOyhCOt2z1qlSpCnGlhHaElzKSTSbk3Zym72tpza80nZJJHZaTfG+0
+1uWTyzNGshT+7kZxWlGa878VbtQ1CSGwh1MapB5aoYGxAATkMcHAHB9Ofoa723Z/LQOcyADcR3N
fE5hgI4SnSrKX8S75esVo11d009Hpez0PpMHipVpzotfBZc3RvVPorNW1Wu5oI3FWI5KzTNtFPhu
MmvBZ6ZsRydOasRyVmxyD8KsxyfnWbQzQD9OaRpfWqwmpjSe9RYkmkkWqskwpskhqrLN71PKA2aT
35qjNLSzTVSml96tIYyaTrVYP+8AolkxzUMbfNk1qkBv2L4UVfWTuOtYtrcfKM1bW4x3oA1Fn9Py
qeObPQ1kJPuq3Ex4qWhmmknvUm7OPWqcb7vrU6tUCJC1IW96Td+NISKQhd3vTGI7mkJHrTGYY60r
ANkOelQt6U939KhZqoCOTpVaQ81NI/eqjPyTTRQxvvVC3U1IzYyai+9WgDWX5aoXcVam35TVa4j3
LVIRjbe1L/DmpJEKtTcfka1RR7vJBVeSHjpWtJD1qvJFXk8xBjvDzxVWVPWtaZBmqU0ferTAy5F2
1XkXOeKvTJtzxxVKXg8VomBTkX1qs/61blqtIO/etEyiB+eagbirDcVDIv5VoBWkFVZODjtVxuQR
VOaqQiIHHFZniLRI9e0yS2fAkHzRSf3W7fgen41ot2NL6GuvC4irhK0K9GVpRd0/QzrUaeIpSpVV
eMlZnk2gazd+DtYeK4RkjLBLiEjJ47jnrzwenNekalpcfiS3sru0vDbywnzbe5RdwwcZypxnI9f/
AK1Y/jjwqurWrXltGBfRDLY/5aIAePdumPy9Kwvh/wCKv7PmGnXcmLaQ5ikduI29PoT+v1r9gxn/
ABkGDWfZYuXE01apGyd1az0d76Xte943WrVj85wt8nxLynHO9CesHrprdaq1td7bPXrc7C3soPCt
nfX19qEk1xPzNdMAGJGQqqvOPYf06UPC+n3/AJz6teahe2+nploLW6uC3y/3nzwBjoPfOeOdy+0G
11LULa7uQ8rW4ISFjmPJP3ivrx/niuT17VL7XdIv7tXgg0iCUJ5Mn35yrA8ntk44/wD1187l055l
CVKM/equKqTklpfSMKa7tLfRJKy5Urv2sbCGClGco+7Tu4RTd21q5TfZP1beru7I7m01K21RWe0u
Y7hVO1jGwbBq/ApXrXNeHdBlstUu9ReK2s0njVI7W0+4AOcngc/hXTg/LxXxGYUaFDEOnhp80dNf
VK6utHZ6XWjtofSYSpVrUlOtHlev3X0euqvvZlqOTbx2qVZvyqjupwl215jR2mgLj3/GkaeqPne9
Meao5QLUk1VJp/eoHlqvJN74pcoDppqqySetMkmAqs8m7rVpAOd9x9qaGwfeoy9Nyc8datIDTt5P
erIlrOt4zxk81bGR70wsXIZMmtCGTsayoT3FWo5KloDVjkqwk2frWUk+ODUvn/jUNAafmDvSNIPW
s/7QfXNH2mosBdMneo2kHrVT7QPemNcUWAstJUDyepqFpyaiMlFgJGYt9Kru2T7UrOTxUTN2FWgE
Zs8U+NM02NCatImBTAbt4xULJkVa21FtqkIybqHBNVQvb8q17iPcuaz2i2t/KqQz6Hkj/Gq00Ywe
1aMq4HNUpq8e5BkXC4PpVKTvWldDrWbNxVpjKNwvWs6TqRWlcdD+dZ8y961QFR6rPxVqSq0lbIZW
buKib5lqSTsai6Ma1QyGTiqknX2q3N3qnJVAVm70Kdy0kn3jTYjVjRMtec+P/CrWlw+p2sZMEhzM
o/gY9/of5/UV6MtKyrIrIyhlYYKsMgg9Qa+iyPOa+R4tYmlqtpLuv8+z6Py0PHzTLKWa4d0Kmj3T
7P8Arc43wT44+2+Xp+oSf6T92Kdj/rPRWP8Ae9D3+vXfbwfo8l+bxrJTOX3nLHaW9ducfpXA+N/C
zeGvP1a13Lp8KtO5QktAFG4n/dGOvbFeFaz+1F4zuPLh0u6h023hJCyfZ0lmlXtvLhhkD+6B7k19
hnFHD+7mGRV+SNb4oJtW73S2Xk+vw6bfOZbUra4LNqXO6XwyaTT7b7vz+/U+0o27U/dtrwD4F/tD
XPjnVk0DxBFDHqbR5truBdgnKjLBl6BiAW4wOCMDiveGmBFfmlajOhLlmfbU6kaqvEmaQdqZ5tVd
x3VgX3jaG1uJVS0lubS3cR3F1GRtjYnGAP4veujCYDE49yjhoc1t9v1tq+i3fRGOIxVDCRUq0rJ/
107dXsup0zS++KiaYjvTWbdyDkVDJmvOsdIrzE9/1qCST3pGzUTfWiwDXk7VHz9KXBboMU5Y/wAT
TsMYoLdOKmjjpyx1KuFqhksa7amWoFcVKrj1pgTr+Rp+/FQbvekaT8KQFj7RT1uPeqDOfrTDMR3q
bCNX7SD1pRMD/FWP9oanLde9TYRreZnoaCx7ms1br3p32v3H50hl7cPWkLiqX2rPcU9ZN3egCZmL
UqRljREu73q1GtAAke0VIFoAp1ADdtMZQGNTbaa6d6Yiu6ZqnNDWhtqOSPctUB73cL17Gsu4bbmt
S7bqKxrpu9eImQVJmrNmq5I26qk3U1qhlOQY/Cs+471fl71Rn7/StUMpOflNVpO9WX6kVWatogVp
B1qBj0NWJKqSN2961iUMmNVJOhqxKarP0NaCKsv3qbD978akaMswrzLR9a8SN8YNbtr2BxbxaN9o
sdJjuhtcCZlVmP3BI+08/wAIYAng1vCDne3QTlynqSrT8V4naeKvE1r4F8d3Go3/AJesx65HYo1v
IzpaLKYEKxbugUSHHvzW1pGreI9NXxx4e0yeTWLzSLqKOyu9Wn3vFHLEHLSOeZNh3EDkngdOm7oO
Kbvt/wAD/wCSREaqk0rf1r/kzs/H2hT+JvBOuaVbNtubuzliiJOBuKnAJ9CeD9a/Pm6tZrG6ltri
JoJ4XKSRyDDKwOCCPXNfavhb4iTaP4E8CLdWmoa9q2t2xWMxOrSPIqbiXaRh19Sax5bvwL8XNV0R
tV8G3BfUnnhg1CYCEmaJSZInaKQO2AvBOV645zXoYWpLCykmrr/K5y1oxrxi07P/ADPnr4I2ch+I
mlaiVb7Jp8ouJ3UdAOg+pP8AWvt+11CDUrZZ7aUSxN0Zc1zF98MNGg0tLbR7GHSmhQLGtuu1Wx03
92P+0fm7kmuS/wCJ14LunXElurHHTdFJ7jsf5j2r7jDZTl/EeDisHW5cTG94y0TXlv8Aer+a2t8p
iMxxeS4lvE0uag7ax1s/Pb7n8mejeJL6XTdBvbiDIlVMKy9Rk4z+Gc1z1rbwakLHRLFlmsLfbPez
x8iRuoXPfJ/l/s1Jo/j6z1FfJv0W0kYbcnLRvnj8Px4962xZoy2j2My2tsknmFLVVCSjBGDjtn/O
cEeco4jIaDwmLpOnUvJxk9YtuNk9E7yWqjraLld2sdsnRziosRhqinCyTj9q17tatWT05tNVGy3D
xHrT6XbxJboJL25cRQI3TPcn2HH5is2w1yexm1KDVLpJls1jY3CptyWGduB3z0qDXLxtP8SQXktt
NcRJbMsAjUsPMJOfpwf1FZk2k3XmaXbSOqX19cPdTsw3BSoBAx3wCePU124PLME8DCniEkpx5nLT
murzlZ2bUYxjyNWd5SvZtK3Li8diVipTo3bg7cvTW0VdaJuUpXX92OjV2dVpmt2msLK1u7ZjPzq6
lSM9Dz/nira7ZOVww+ua4++unuNJuDOFJjvxa3l1Cm0yxL/Ecfh/k1J4euIILjXpNLTNnHGrwxnd
gsEPrzyRXnYrhtKnUrUW1aVknrG/NGFnPTW7uly/Dq7PQ7cPnMvaU6NRJ3W+z2k7qOuiUbN83xPS
514jp20L1rk9B1i+uNRtUa/TUIpoDJKqRqvkHsCR3zxzXSXN0ltDJK5wkal2+gGTXzeOyutgcTHC
tqUna1r9dErSSafqvwZ7WDx1PGUXWinFLvbtfo2uvcmaT0pnme9c5p/iS4uriJLm1WCO5Qy25V8k
qOx98c1Z1HV00+DzZNxywVUQZZmPQClVyvFUcSsI43m9rNNP0a0737WY6WPw9Wi8QpWit7pq3yeu
zTXqbqye9P8AMrn7DWory1ecM0KxsVkEvylCOoNWLLWLa9gaaC4V4kBLN0246k56VhPA4qnzc9Nr
lfK9HpLtfv5G0MVQqcvLNe8rrXdd/wDPsbayYp/mZrLt9Qim2+XLHJuGRtYHIq0soPtXJKnKD5ZK
zOiMoyV4u5a4boaikyKFemStkdazsURs1N8ymHr1pGX3pcoDjMKTzqiYH1pmw+tHKItpN71et23Y
71lRxsPetC1zxSsFjVhXNWlBX3qC39atLjrUiHLhvrT9tMqZeR71IDdtG0VLtNIRSArvHt5HSo26
VZbvUEi4+lMD2u8l+asi4b+dW7iTc3WqMx4zXiRIKjHmq0zfyqaRu9VZG5NboZXk6VQuDV6Y8fhW
dP8A0rWIyqx+aoGqZvvVA1bRAglqnJ1NXZe9V2hLMfetEWVXUtikS33A8VoR2u4YIqVbXHatBGat
rzyK5yPwXNH8S5vE/nxm3k0lNP8As+DvDCVn3Z6Yw2K7Ro9vamMv4VpGbjsS1fc8xuvhXJeaL4ys
JL9In1rUv7RtpkTd5DKIym4HrhowT7Gr/hHwbeaJHr15ql1b3Wta3N51zJaxGOBMIEREBJOAB1Jz
ya7qSP1FVpFNaurKUXHo/wDgf5L7hRjFSUl01/P/ADf3nm+kfDO60228ARteQu3huOVJtqn99vi2
Db6c881W8NfC280OPwqkl7DKdH1C8vJNqkeYJhIAo9xvGc+lelMOeKVU3c1ft5u93v8A8H/MXs4p
Jdhm3NQz2yTRsksayxtwyuoZT9QaueUaYyn0rKMnF3TNGk1ZnA6z8N7add+nyG2kAP7uTLI349R+
tcqf7b8G3DKRJbqTj+9E/uOxP617I0Yb2qvcW6TRtHNGssbdUdQyn6g1+g5fxli6MPq2YRWIpPdS
3+/W/wA7+qPj8Zw1h6k/b4OTo1F1jt93T5W9GcRpfxCtblkS9iNqxHMi/Mmfp1A/P+tbV9p9pr0M
EonYeWd0VxbSYZfXB/KqOtfDuyvsyWTfYpv7oGYz+Hb8Pyrjriy1nwfOzfPAjNt8yP5o3x09vz56
+9e7h8tynNpqvkOIdCv/ACS897bvbe3MrdEeXWx2Y5dF0s2o+1pfzR/Xb8ba9WdncaPNY21omkzL
D9nLExTM2yXPXdjrVG+0ea10CeNN15czTia52DBlGclV9O36/SsZfiFfbhvtrYr3Chgfz3GvFfj9
8UtR1i6j0C3LWVikYkuUjc/vmbkBv9kDBx6n2FctbA55lCpVcXGLgpXburyfvOza957ya7PXorb0
cXlOYudPDtqTi0lZ2SsldL4VpZenq7+9eFtd03VtYvpdLlt1t/KUfZ4XTcSDguVUnGM4z71peI5n
fRL0Jy3l9B6ZGf0zXwjY31zpl3FdWk8lrcxHck0LFWU+oIr66+HfxRg8ReD9PvNSgmN8ymOcxopR
2UlS3JHXGce9eXChisVmlPGYWk5uDi+Vb2hypavfZXfc9L2tDDYKeHxFTlUuZc2yvK/Rbb6I6C2Z
L3WdOSBg8dta7sqcgEjbj8sVc1S38zWdEjPKtJI/5KCKg0rxRoVmzLDDJZhvmLNEMHHQcEn/ACaD
ceHbi1S3hu2txC5dJFZkdWPUgkV6MsHiaeK56mHqxgoOmnyc2koyTk2na/M72V9Hvda+fDEUJ4Zw
jWpuUpKTXNb4XGyV+8Y2u7a9O1c2sl1p+sSRRtMn2/5o15LopG4D9Pyq3pDRap4g1PZbPBayW6q8
Ui7CScYJA6ZGalb+z/7JitrHVIrTy2Do/mgHIJzuGRkHJ4qza6TPZ296xn86/uQczMNoDYwvToBV
YnMKcqFWE26cpy5Y3Uk4rng+Z6cuiitU+ZPS1tR0MHN1qcoe9GKvKzi09J6Lrq5W2s1r5FDR9HtL
jWJL21hENrbMYotpJ8x+hbr054qTVPEUzXUFppw3F5RG1xgFQe4X1wOp7Vci00waItgkphPl7DIn
PJ5Y/ic/nWHplnd2uuwW+5bi3sVOGZAmwODyMdScY796wpVsJmE8Tj8RNTdKLUIzb+FK0W21aTcm
tG923Z6F1KWIwVOjhqMOT2slzSjb4m9Ulukop6pbJbas7MTbe9Ne4JqDzuORSb1Nfm9j7clVstya
lyKrbh6ineYPUfnQIn4pVxUAkHr+tTxrmgZZjjHUVdhQdaqQ/LVuNu1JgXYflqyrY4qgkmKlWYdK
yYy+pqWHvVKOXoKtwv8AMDUkljbTWFSLg0jD0qBkDVE3pVhlqCQUAeqSNkmqlw3y/hVhj1qncNzi
vGiZlWVutVWOcmppGqGtkMhm6N9Kzpu/0rQm6GqTxFmPFaoZSwWameWeKvpbENkilaAL9K1QGa9u
T2qWKz3DniryQ7uoqwsO2tBlD7LgdM0xotvtWi0ftULx/jTuMzpF9RUDR+laEkP4VWkTb7GrTApu
PxqtInFXWGfY1BItUBS8v5uKmSEVKkYZqnEJ9M1VwKjR+9RMp7irkkftULKaAKbJ6cVna5rVj4c0
ybUNTuEtLKHHmTPkhckKOnPUgfjWuyj6V5H+0poC6h8Pbm/lurlVsGjeO1jfbE7tLGu9xjLFVLAD
OBuJrejFVKkYSdk2hSlyxbXQ7TXPGOheHL+wstS1W3srq+bbbxStgvyBn2GTjJwM1BqHjrw9pviC
Dw/earbRarcgBLR25bdnCk4wCccAkE5HqK8x+JCJ/avxM8/aceGbXyd2M/6xyMZ/29v4474rE8UL
dN4g8QXZSE6JDqujf2qXb/TPOVVA8jjG351zk5+9jqa7adCMrXf9XS/U5ZVpJPT+rXPTI/H3gG91
r+xUvbF9Rac2otvsrAmQNtK52Y6j1rz34/fAq68TSWus+GbSNryJPJuLJCEMi5JV1yQMjJBHpj0r
v1jXxd8aZUm/e2fhezQxxtkj7VcZO/8ACNcD0JJrjPDfi7xjqzeC/O8SfL4ha/hkAsYMwiFm2uvy
8vgY5yv+yTyeqOIr2jy1H3abbWz/AEX4mbo0bybgu10lfp+p4BovwX8ba5frax+G9QtCeTNfQNbx
qM4zucAH6DJ9q+qfCvwb0rw34fstONzcyyQpiSRWVQ7k5YgFeBknHtitz4W65e+JvAunX+pSrNfM
00UsyoEEhjmeMNtHAJCgkDjNdQVrojnGMwlRvDz5Hs2uphLLsNiIWrx5l2Zx03w309lxFcXKNnqz
Kw/kKqTfDNDjyr9l9d8YP9RXdbBQVr0KfFmd0vhxL+ai/wA0ziqcO5VU3oL5Nr8mebT/AA5vkkIi
urd4+zPuU/kAf51R/wCEc17TRmKKVQPn/cyA9PYHk16qyjFRtGO1evS46zRLkrxhUXnH/JpfgedP
hPAN81Fyg/J/53PLF8RazpkgjuGkyOTHcx8nPuRn9atw+OphjzrZH4/gcr/jXoM0YdSjqGQ9VYZB
rLu/D2nXX+ts4m5ySo2n8xg10f6w5FjP9+y5J9XB2/Ll/P5mX9jZthl/smNbXaSv+fN+Rzt/8QdC
0vT5L2+vfsUMY585Tkn0AGck46CuNtf2kvB9xqAtm/tC3j3FftUtuvlfXhi2D/u/XFefftM6SdF1
TRYIXkaykhkcB/74YA/pt/OvFa8LFYPLatVzwPN7N7X38+nfTr6nr4fE46FNRxiXP1tt5dT75tby
G+tYbm3kWeCZA8ckZyrKRkEGkvL6HT7dpp22Iv4k+wryP9mrWnk8GT2VxNuEV24t0cnhSqkhfxJO
Pc16Bql7DHrYN5uMMEYaGEAnzHJ6/X6+lY4DJp18W6VSEnGMeayWsldJW9W1eWyV30NsVmUaOGVS
Eldvlu9ovrf0S23ei6mnpusNeXht5rV7WQxiVNzZ3LnHPp/+ut+HK4xWBodnK1xLf3Y23UwCiPtG
nYfWppPFdnbzOgSaWKNgsk8aZjQk45NZ4zL1icVOGW0+aMUr8t3G9tbNttq97a3fTQMNjPYYeM8d
Ozk3a9k7dLpbO2r006nTRtuXNSq3aqqttNTbh1r5k9wsb/zpRJUG786XP4GoaGW45vWrkNx0BrLV
vzqxHJUMDbhnyPerAbcKyIZCMVehkrMksMKikWpqY3NID0Z81Rlar0nQ1W8gsTxXjxIKEilqPIJ7
VpCy9ql+zDHIxWqGY/2UstN+y7TnGfWtZ4Qv1qB1/A1omMzJIRjiq7DnFaMy9wKqNHlvatEMbHCf
qKkZAPapooyBTnX1FVcRTZT+FRMo7VbeMHpxVeRaq4FZ19aqzJV5lxwagkX8qYzMkXFQtzwauzp1
9KpMp3YrRMY6OP2qfy/lpbdeKn2j0qgKTKagZM+1X3jHaoJI/agRRdPasjxD4dsPFGkz6ZqtsLuw
m2+ZCXZd21gw5Ug9QD17VvMhFRNH6VcZOLug8jlde8BaB4l1CxvtT0uC9u7E5gkk3ArgggEAgOuQ
DtbIz2qvqPw68N6t4ig1670iCbVoSpW4bcMlc7WZAdrsM8FgSMDB4GOsaOmGP14rRVJq1mLli90Y
9j4fsNK1TUdRtbYRXuoMjXU29mMpRdqcEkDA9MVRsfAWgaf/AGR9m05Yv7JaVrL97IfJMufMPLfN
nJ+9nHbFdJ5ZA9abt/Cjnl3/AK2/IrlXYytG8P2PhvTUsNNg+zWcbO6x72bBdi7HLEnlmJ696tFC
KtMp9KYVBo5m9WG2xW259qaVK1YaOoyCKoZzPjzxlY+AfDN3q97hvKUiG3DbWnkwSqDg9ccnBwAT
2rB1f4mTWdrpIsNGOo6hfac2qyWv2oRLDAqBmO8qdzZYKBgZ7kVt/E7TV1DwD4hWO2FzdjTbkQBY
97hmiZcJxnJBxx1zivO9Utbzw9N4b1ibTry4t38LyaYUtrZ5XS4KIyIygEjdgjJGARziuulGEo6q
7/4D0+8wnKSfl/wV+h0epfFQyXFvFoWhXXiAtp8WqTrBIFeO3kYBdqgMXfBJ28cDrUGt/FE6T4gu
rNdHkn02yubW0u783ARopJxlNsW35gMrk7hjPQ4rznxB4Du9D8hL3TtSubxvDlrBpslgJGEWoxEA
BinAKlshm4A3Yq/4m0XUpPGF9JPY6hL4ha90yWxFvAxsbhI1HmPKQNhKky8vyMrt4zXYqNK6S1X/
AAUvwX3b6nL7Spytvf8A4F/z/wAtDvfiJ4L0L4kaUNLvbuOK6R2NvNE6mSKQD5sLnkAfeX+XBrxn
S/2Wbm6vo5JfEdnNpLMSJrVC0jqD2H3QTjH3jj3ro77wNFdXD3kuiNLdzeOHEszWxLtaEHqcZ8o9
/wCE5rt/hTpb6Tb+J7YWjWVsuu3JtofK8tBEVjxsGMbc5xjiiE50ab9nP+tP8y5RjVmlOP8AWv8A
kUJPh6vhXTooNKVnsrdcBP8AloPVjjrk8596taV4pkhKxXg8xFGFk25ZOn5j9a7qRdy+9c/rXhuH
UkeSFVhuuuRwG+vufWvvsu4kwuPowy/PIJxWkZpax6a/5rpumfIY7I8Rg6ssblM2pPVxez9P8n8m
iO9upIdBhK3ona4cRm6xgKpzk+2Bxzz1oggj1NoNOtBjSrdg00naZh/D7jP4fkK57S9Ul0WeS3uY
vMtmOJbeQfrg9+n1rrGtW1XyxBcJBpRXhLcbWf1B9B/9cV6WZYX+xo8jdoNylGp9n3u0YpXqKLtD
VRSvJW1txYLELNPeSvJKMXDrp/ek/gb1k9ZfZd9LrceIJNJ1zy7ieO4s5+FCY3wnpyByR/ntiumj
l2/SsKO3sNFh4EVoGBHmEgMfxPWqfhrWpJLq4sZJWvFjYmO6UHBHoT/nv7V8VjMJDMMNLG4Olyxp
JKTtbm6c1kuVPZSSk779z6ehiJYOusPip3dRtpXvy9bXerT6OyS27HYBh1BpVbNVUkx7ipgc8ivj
z6EsA1JG351XVu1Sr71LQy9E9XYZKzI2/OrsLcVk0BpRv2p9V4m4xVleRWYj1A2pbNPW1x2zWt9n
Hpg0xoR6YNeMmQZ/kj61G0fHTNXXjx7VXkX860TGUJk7jkVTkXFaci+1Upo8fSrAoSDvUQi+bIHF
WWX5qlhg3cirTGRRxjFEkdXvK46VFJGPTBqrgZskdV3HYitKSM/UVVaP0qrjKMkf5VXcY6dKuyLt
5qrIO4q0xFC4FVVj3N71ekXPFJFb/NVjEih2qOKftHpVlY8UFfancZTZRUTKefSrrIO4xUTRelO4
FFo8+1QPHj2rQaP1GKhaP8RVXAomP1pjRfjV0xjtUbR/hVCKRj5pjR+oxVxk9RTWi9DTuBT8s9qY
y+oq20f4UxkP1pjuVTH6c1Gy+1Wyg+lROp9MiqGVGj9KjxVtk9KjZc8EVVwK+3IqNl9astGR06VG
3TmquIpuvWq0i9xV6RdvuKrSLiqApOKryDHIq7MvcVUk9O1UhmJr+hx6tCZYwEukHDY+8PQ1zvh/
WX0e6aCYMIHbDg8GNumef1+ldv8AdbFc54q0P7QrXsI/eKvzoB94ev1H8hX6bw3nFKvTeS5nrSnp
Fv7L6L0vt0T8mfDZ5llSjUWa4DSpDWSX2l1/DfuvM1I9JsoUa7vZRetjJnuMMoU9AB0A5/WotVvr
6S+jso2+xwTcJdL8+84yAD261gaPfDUbF9HuZBGkgxDJ3ByDt9/8j0rpbXTLqa8hudRnjkaH/VRQ
ghFOMbue9bY3Df2PiJ1MyqKpNKXIpJvovZuEbcu91JPSNrJXs3nha/8AaVCMcDBxjLl5mn1u+dSd
+ba1mtXffcv6JcXc1kPtkXlzIShOeHx/FWorFelV1bb9KlU9xzX5piKirVZVIxUU3ey2Xkrn29Gm
6VONNycrdXu/UtryMipUJNVY2wfarK9sVympYQn8atwv0qmvrU8Z5xUNDNKNqto2eazYWq7C1YtE
nv7RjHSq8iH8KvyRY7VXda8BMgoSJ+IqtJHir8iYNV5I/TpVpgZ8i/nVWWPrxWjLH3qq0ZYmtUxm
d5Hzfyq3Db8dKsx22e1WFtwo6VQFF4/aoHStJ4hVaSI/WncDOkTPtVeSPn0NX5I6rSLVpjM2aP8A
OqUi7c1qyrn6VTliOferTAoNDuPtUscOPep44Tuqbyx6Yq0wK20emKay1ZaP0NQsvPIxVXAgaP1p
jRirG0imFQaYysy/jULRjqOKuMn41Ey0wKbJ6io2Uj6VbZfyqNk9Ku4yr5Ypjx8c1YYD6Gozx1qg
K7J+IqMx+nFWmUdqhZfwoEQMnqKjK1YbjvUbe1VcCtImc9qgZcdatt81QSLt47VQyu31zUbKGqZu
OlRNjqKYyu3WoJB+VWpBuFV26VaAqSLiqUq4bFaEi9QaqyrkVYim/I96j3cU9uKi6NitEM47xJpB
sbgXUA2wu3OD91uTx7V0fhnWTqtmVkP+kQ4D/wC0OzVZuoY7i3kil5jYfNzjj1r5W1/4zazba3Od
AulsrWJykUyxK7SKMjcdwIGeuMccV+kvNMPnWTfVca37elbkla915v5Wfydm0z4dZfWyrNPrGFX7
mp8S7Py/NfNaaH16uOlSo2OO1fOfwj/aA1LUNftdH8SyR3Ed2wihvVjCOshPyhgvBUnjOBjIzxX0
Yp3Cvz6tRnRdpn2VKrGqrxJlyDViE44NVo/mFTLxXKzYtKeanRu1V0+YA1Kp71DEXYmq5G3Q1nRt
VyFu1ZMD6dkiqlLH1rUkjK8YqtLH6da+YUjEynWoHT0q/LFnnvVV1x1FaJlFKRB26VALfLcdKvNH
zkU+GENz0rRMCCOEhac0f0q75P0pGj9s1Vxma8ftVeSP8a05IfbFVpIep60+YDLki3VSmjrVlTrm
qssdXcDIkXBPFRGDf9KvTRc06GH2rRMZRW3K9s0GPFaTQ/jUEkNVcDOkixzULL7VoSRVXkj/AAqr
jKjRg9OKidMdatMn+RUbLV3AqEYppUN061YdPSoGX8Kq4iJlqJk/CrFRsv5UxlZ1B+tQtxwRVl1/
OoZBnIqhlZuPpTG+bvzTmPUGot1WgGtULNj2qWT1qBzTEI3rUT80/dULN1qkBExxUDN81SSt81QN
1FUMRutQydakY9Kjk5WqQyCT1qvNVlvunvXjcfiLxHp+pfEa71KZI7mz0qK6tbOGQvFa/JKVAzwW
4BYgYJzjgCuinDnvboRKXLbzPTJlwx9Khbsa8la41nT11vRdOu9Q1Ke58O299B5tw0ky3DkxsyMT
lc8NgEAY4xV/RY4dSsdV0qe51Xw1e2EkMupLdak9yzQBSwKymQiMMM7ihGMY9K6XR5d2ZRq81rI9
DvYBd2c0JYqJY2jLDqMgjP618O69od54b1a502+iaG5t3KsGGM+jD1BHINfRnhf4g3mn6VEILK81
y31LVbm30nzbjEjQooKkvJyV3bhljkAHrjFTt4l0fx9daNFq/hPdFdyS2qXVyY3MU8e4tEMfMV4P
zcAk9ODjtw7nhpPS6ZhW5a8Ur2Z4T8LvCt54s8a6Zb2qHy4Zknnmx8scasCSffjA9SRX26rc/WvL
dB0608H6ytvaW0drbCXDLEoGVb+I46nBH5YrvLzV2tJltre3e7uiu7y1OAq9Mk/Wvps4yTEQq0I0
WpxnDnT0St1u27JLTV23R4WWZpRlTrSqpxlCXK1u/LRa3bvor7G2rbWzU61yt3rOq6bbteXVtaxW
6sFMPmEyt9D0P88A/WuqhO5R2r5XGZfVwcYTm04yvZxakrq11ddrry7HvYfGU8TKUIppxtdNNOzv
Z697PzLMPpUyGoI224qboa8tnaTp/KrUTYxVRGqeNu1ZyGj68uLfrxWfNGVroHQNwaz7q2618fGV
znMWSPdVKaE9e9askZUniq8kW6tkxmYkeTgjirccIxUsdrlulWlt8CtLjKnlfSmNCKvND7VG0J9K
dxlCSI1Xki9RitF1qFo/WncDGuIaoyR7etbk0PFZ9xD14q1IDLaLc1SxW/HSp1hO6rKwgDpWlxlB
oev9aryQ47VqPHVeSPFVcDLaP8qqyx1qSR+nFVJY/wA6pMDNZNv+FRMtXJFqvIv51omMqOvpULDP
1qywqvJxzVDIG/Wo92etPk55qEnvWiEI1V5j3qeRuM1Umb5TVDRVmbDVCW+aluG5FQ7stVoY+Rvl
qJmp0jdKgkaqAXdVdnokfjFQs20VSEJI2WNROaduqNm5qhoR+1Mb7tDtmmM3FUhjGrj7jwRFd6x4
lu7m4MlvrdnHZSW6ptMaqrqTuzySH9BjHeuuY1XatYycb2JaTtc8+s/hteW9vqEs+vzNq01nDY29
9awiEwRxHK/LuO4k8tyAemBWRr3wpv8AXrHVBPr6pf6pNCbyeOzKxvDEpCxKnmZAJwSdxJx2r1Jv
umqj/droVad73/IzVKNrHEL4Ju2utAkub6zCaPMzxQ2dk0KFDHsCYMjYx1z+neq2n/D86dHpC/bx
J/Z+oXF9/qceZ5u/5fvcY39ec46V28p+aoJO9V7Wfcr2cexyviRPL1FXHBZA2R144/pXTTQ2OqXV
mWkuILqaAOrRNtLJ1wTyMjn/ADisPxUpMdq2OAWBbH0wP51q2OoSWPhKOeICSRfl+bkL82Mn6D+l
fr8pVsTkuX1sO2ql3SVnbe6V9Hde4tLemp+cQjToZrjqNZJwsqjur7Wbtqtfeepr2PhyytphMyvd
TZyJLht5HTGO3b61uQthq4JruwuFButZu7ts5MUKsi9OwxgV0fhn7VHYMLnzQokbyVnP7wR8YDe/
Wvi85y/E06SxOLrSlK6VpRlHTX4eazaVtfdSV0fSZZjcPOr7DDUlGL1vFxl/4Fy3Sb9WdGpqVWyo
qsrdxUsbfNXxbPpiwh7VYRuhqqpwanjNSxH2sV6U2SLzFp/WnDmviDExrm36jFVBbndyK6GS2ElQ
Gz2npWqkBnx247in+SB2q6IB9KRoTV3GUGt6ikt60GjI7VGye9O4GVJD6iq0kVbDR+1VpoRzVcwG
LLHjiqc0W6tW4j9qptGa0TGUo4OemKmaHjpmrccPtSvCKq4zMkj69qpzIVrVmjx71RmXr6VaYGdI
KrSLn6VdlTFVJK0TGUZkx9apyelaEy5FUZKtDKkvHPeqslW5en0qlIeorVAQFu1QMeoqRjzUUn3q
0QETt8pqnM/FWJDwapTNWgytM3zUxe9NkbLGnLwtaIYkjDJqtI9PkbAqtK2AaYDWfLdaiZ80hpjN
tFWIcz7ajLAUxmPJNRNIe5qiiTd3pjN81R+ZngUbqpADnioXPFKzbjTGOatCGP8AdNVW+6asyn5a
rP8AdqkCKk3UVEw5qebqKiarGYPiQFtPQjoJBn8jWj4Wukj0F2xv8reWUewzj8qq65H5mmzADJXD
DHsef0zTfBNwdtzCSMAqwX65B/kK/UMM44jhSTkrqjVTa2urr/5LfTbyPg616PEcbO3tKbSfZ6//
ACIs1/fSWqXn2yGGOTAFvbY83BOMKcZ3Yrd0eS5j1K8tXmkubaEKEmmXDbu4z/F9ao2CWUd/qEy2
dvDHaEqX/i3DkkA8AenT/BINea+1e0+yTySRy8S2rRY8tQPvbv8ACnjqc8XRrUKNBRjCN3JxSs9J
2vFStJR0vKSvez1shYWccNUp1q1ZuUpWsm3feLdpNaOTTsk7WuurOuibtU6tVJWPUdanVu/avy1n
3pdRtwqaNqpxtzjsasK3NQI+4BjtT14qpHL6VMs3rXxFjnJ80oAPWmKw60u6kA4ximNDTgaeGp3Y
FSSI+maiaIVebDdaY0XFXzdwM548dKqSr+BrUkhI6c1UljzxV3KMieHdniq4tTnpmtOSL5v60qxe
1UmBnrbgD0pksP41qGMGq00XX1q+YdzHnWs+Ze9a9wnWsy44zVpgZs+PwrOm4bmtKbvWfcVrFjKk
hqjL1Iq7JVKXrWyGVpaz5jhq0JPu1nXHU/WtIjK0hqKQ9Klcdahk+7WqGVpm61Qlb5quTd6qOvzV
qCKmM1My/IaQJUrL8prRDKUi1WmWr8i8VWlWqEU9vNV5V+arsgqtJ96rGVpFqq2WbFXpOtVwmGqk
Mi+59aYzeppZ2wxqJVLVoIdupKfsxUUjdhTEMkbJx6VDJUhHFQv3qhkE3aoWqR/mao261YypNGJI
3Q9GBB/GsDwpOYdYCdRIrL+XP9P1ropO9cs/+j+IFYc4mVufcg1+l8JWxWGx2XP7cLryaur/AHtd
eh8NxJ/s9fB41fZnZ+js/wAk/vOr1SHRop1lv0UTMAR975u2cDr0pdS8RQLpkxsLyNZ1UFBgeo6A
+2a1ISA2f4sYzRcWcF1nzoY5T0y6gmvncPmOFcqLxsZ1FTto5qUbaaKLjov+3j3K2CxFqv1WUIOf
VRal6uSlq/kWbacTwxTLwsihvzGasx9cVWgRI4lRFCoowFUcAelWF6e9fMS5bvl2Pbjzcq5tywtW
EbcoPeqqtkA1NG2G9jWLKPtUSVIsxHvWeshHT8qlWb8DXxpgaCze9SLNWd5nrSiX0NTyiNMXFL9o
FZvnNR559qXKBqLMKlRw1ZK3FWoZvQ1PKIuuoYVWmhzViNgw96c2CMUr2AyJI/mwRTPL29PyrQmh
/Kqzpt69K1TGVmx6YNVZT2NWpv1qjM3FUMo3Xesi6Nal01Y9y3BrSIIpTHK1Qn71eeqU3y/nWsSi
jJ3qnN61dcc1Um+6a6EMqSd6z7gda0HqlcCtEMpvUEgytTt0qIjqK1QyrIvWqrLzV6RaqyL1rUCt
t6ihelOb7wNNHWtUUROMZqtIKtydaqS/epklWT7tV5OasS96qyHirGRtUbjBqRj0pknSrQylMPmN
LDiib7wpsbYrQQ+Ztq8VTZqnnbOKgI6VQDGJ/ConO1TSNf2v2/7D9oj+2+V532feN+zON23rjPGa
oWOvadrE1xHY39tePbtslSCVXMZ54YA8dD+VXysLos1G3U1Wk1vT1N6pvrcGzGbkeav7jIz8/Py8
c802x1O01azW6sbmG8t3JCzQOHU44PIquV7hdDpmCozMdqjkk9q+c/G3xunuNbmXRIYhZxnYs06k
tJjgkDIwPTv/ACH0FrVq99o99bRHbLNBJGrehKkD+dfFN1ay2NzLbzxtFPExR43GCrA4IIr6HJ8R
VwlWVWhNxla2nZ/8Mjx80o08RTjTqx5le/z/AKZ9JfCb48N4r1SPR9bghtr6bi3uIchJDjOxgc4b
rg5wemAevtYORXxV8KdHu9Z+IGiR2kbOYblLiRlHCIjBmJPYcY+pAr7SjbtXBjKUKclydTrwtSU4
vm6E0bc1Op5qtUqHNeazuLMZwcVMtVg3APepg3ygioA+yA+R607f+NU1kx0qRZPwNfHNGBY8z0NO
831FV99N8wDvUgWvPHuKb9p9zVVpP9qozL70rAaC3H+1Vy3kLYNZMGWPrWnb/Lz2oA04pT+NWVkD
VnxtU6SYqHERb61Xmj6+lSJJT2AZajYRjXAK5H5VmTt8xrYvlwuaxLg1qikUrhsisqfpWnN3rOmH
WtYgUHFVJl61df8ApVWUda2iUUJR81U5x1q/Kvf2qnMK3iMz5Kpz1ekXr+dU5x1rRAUT0NR/xGpm
HJ+tRN96tkMhkXqKry1ak+8arP8AdrVAU5BwaiJ5qeQdarHtWiKElPAqrJ96rUinaKrSLzVAVJOp
qpJ92rkyncaqSKdtWIiJ4FMlPAp5XpUMxq0UV5u1Rq1OkbmolNaCCRvmpjdqRmyxpm7dVoDySbTZ
tF+JXieQXs95d3Hh97kzSYBVjK4VUA6BVVQPpnvWRoWtQeELPw/qohUpD4SaWVEGN5EkewEj1dj/
AN9GvX5NDsf7bbVvI/4mD24tWl3tzEGLBducdSecZqlonhDSPDE00+m2f2aWVdhPmO21cltqhidi
5YnauBz0rtVaPLZ/1uv1Od03e6/rZ/oeD6XeQTaf4rt21CHUZ7q902e4aNgySbnj87Hqgdyv5Cut
utV1HR/EOuQaPNFaG78SW1tukiDoPMhBk+X6gHgg+4r0W88J6Td/2uZ7NZf7WCi8DuxEu1dq8Z+U
gY6Y6ZrMbw3omlx2loljLKYrr+0EVHd5DMCf3jMWyx5/iJ/lXoYeM8ZPkowcnbb/AMBv+X4nLVcc
NBzqzSXf/wACt+f4HFWfjDxLbzWjXeo293BDrx0WZBaBGuFLY8wkH5SOwUY9c11Hij4b+H/FLSXd
/pyPdhP9fGzRscA43bSM/j7U+TRdCbLJp88kQvv7TZ1Z8C4yDv8AvevUdPaukkIe1kZTlWQkH14r
oqYTEYOtRlWpuF31S8rp/qn3MYYihiadVUp81l/nZ/8ABRzXwx0HTfDc1zb6fZpbiRAzOOWbBxyx
5PX1r0NcjmuK8H/8hKT/AK5H+Yrtq9rjOjToZtKNKKiuWOi9LHlcLValbLYyqSu7vf1JVORT0bnF
Qoe1Pr4Y+uLKtUiN2qurZ5qUdKgD67E2OtPWb8az/N9DTTMa+QsYml9ox0NNNx7is1rg+tRtcmlY
DSa5+lIs25qzPOLHrV21ySCRRYDZsznHY1pI3cVlW7bVHNXI5vzqGhF9ZMfSpRJmqCyflT1lx06V
AGgsxHHapFmz71nrNkcGnq4+hpWESXjbozWHcLWvICw61Rnh6/Si1gMqbvWdMPmNasy1nXC/MTWk
Rmc3Wq0i8/hVt1+Y/WoZVrZFGdMOKpSCtGdetUpF61tEDPmXn9KozCtOZflNUJl61shlBhz+FQSf
eFW5FxULR1qiivIOlVnHUVfaPctVmTn2rSIihIpqv5fUVoPFULL371oiitt+XFV5Eq43HNV5hWgG
fMtVmTqKuSDkiq8i4qkBSk4U1TlPzVdnqhJ2rRDIZO9NVeKm2801uK0JKTUAcU5h1FMY/Kasoidt
zGopG+WnAHNRv3qgIpDWTq32dZo5HumtZthUFDyVzn+dabcsazr+xma6a4gaMuyBWWRc9OmK+lyO
pSpYlyq1eTTTVJN3WjbjJJW11T26bnjZtCpPD2p0+fVd3bzSTi2/Rrf5GfF5EimCDUGiik6xsvJ9
fmPTP9a1buNY9NmRRhViKgewFZ81vc3n+jyC2h3fMdv38Z6gVY1yb7PpjKDzIQnXB9T/ACx+NfS4
lPGZjg6NKpzNyu17rtdr3nKMYqTaWrd3pu7nz9B/VsHiatSFko2T95dH7qjKUuVJ9rLXbQg8G/66
5/3R/WuvXpXNeD7bZazTnrI20ZHYd8/j+ldIteVxfWjWzqu4dLL5qKT/ABPR4apypZXSUut397bX
4C96mByKiNOjbtXxx9QSxthqnU1AvrUqnikwPqD7T7/nS/aP8isvzjThLXynKZGgZ80nnVS84+pp
fOP96psBoQuGIrTt+OnFY1s5z61pwyYA9KVgNKKXH0qdZqoK/oakWT0/KoYjRW49TUqyZ9qzVkqV
ZiO9Q0I0RJ61IkvvkVnrN71KsnpxUWA1I2DdKSZeCaggc/jVhmDL6UgMa5X5j9azriOte5XLMaz5
4+KpAY8y/NULrkH6VanWoOxrZDM+de9UpF/wrSmXqPxqlKvJ/OtYjKMkeapSx1qMtVpo+5rZDMmS
OoSn5itGSKqsse05rVMZUZdtV5Uq6yjHtVWRc5FaIZUZagkXvVp/1qGStAKUnBx2qtJ3FW5hwaqy
cc1ohlORaglq1N3qpN92rAoTdKoTf1q/N3qhL3rRbjAdAajfqacrfKKZJ1rVCKzfeIqNjkVJJ941
FVoZGtRSdKkqFvumrQEQWsvVdJW9kMqMUlGOudpA7GtSsTVoGa8MkkD3MGz5VRsbT3/Ovq+HZVYY
xyo1vZtLyblqvdSlKKffdbXWp4OdKnLC8tWlzpvz031ulJrtonvroVbfTFnvAGhdIQnLBtyk57NT
/E8gX7PCDzgsV/QH+dMa3Q4FjaXMVxkYkbKgc/WmeJs/bosnP7ofzNfpGC5sVn2Gq1ajajGVoveN
la7XNPe90+a7a+/4LF8uHyjEU6cEm5RvJbO7vZPljtbVWtr93TaDD5Ok2wK7SV3fnzWknWqmmsG0
+2IAUGJOB0HyjirSnFfj2YVJVsZWqS3cpP72z9NwUFTw1KEdlFL8ESUq9aSnLXAdxKKlj70xRU0a
9aQH0CslOElUPNp3nH6181YzLwkH0pytz1qgJjVm3bdSsBq2/wAuO1Xo5Kz4WwPaphJioaA0UmwO
tTLN71mrJ+BqZZPwNZtCNASetOEx+tUlmqRG3e1TYC8km6rdsCxqnbx7uvWtS3UDaagRehj+WpHX
ikhb5akPrWYijKlUpY/lPFasijrVSROtIGc/cxYY1RIw1bV5D1rJnXa1axYyrMveqUi9fatGT5lq
nIvNaoZTZetQyIKsuMfhUL4rZDKUsf51TmTitKX+VUZ6tMDPk4NVpKszVVkNbIZBL644qu3TFTs2
VIqBj0rSIFeVapTDrV+QdRVKf1rRFFOXnFUpjwauSdCKo3B61qIqSdTVGarjNVOWrRSIg3y0xutK
p+U012rZCIpj81VyetSSN81QM2FNWgQxWqNm+U0uajc/LVjG7qzrvVLa1kKSP84GdqjJq+3Q1my2
cyTyzWs4jaQgsjrkMR79q93K6eCqVJLGytporuKbvs5KM7aeXzR5mPniqdNPCq7vrpdpW6JyjfXz
+TGLqlveXFvsuWiIPMZGN2ccE1V8UqubZsfMQwJ9hj/E1X8Sasmh6TLqOs3Cx2VuVYrbxlmc5wB7
df1rzDUP2hNP1S+jjbSLiCyRmC3HnKzkHoTHgAdP7x/GvtMpq4LCZxhq1KdoRUlLW6V1Ky5lCHNq
1fR276afJ5jTxWJy3EU6kLzk4uOlm7NX93mlbRd1ft3930Fi2k2xJydmPyrQrK8K3UGoeHdPubaT
zYJoRIj7SuQeehrW2mvg8ylGWNryhs5yt6XZ9hgYyjhaSluoxv8AchycirEa81FClW44+9ead4Ba
njX5aYq81YVegpMD/9k=</Data></Enclosure></Binary></metadata>