-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsiamese.py
112 lines (93 loc) · 3.35 KB
/
siamese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import torch
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import omniglot
class Net(nn.Module):
def __init__(self, input_shape):
super(Net, self).__init__()
ch, row, col = input_shape
kernel = 3
pad = int((kernel-1)/2.0)
self.predict = nn.Linear(128, 2)
self.convolution = nn.Sequential(
nn.Conv2d(ch, 64, kernel, padding=pad),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel, padding=pad),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 128, kernel, padding=pad),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel, padding=pad),
nn.ReLU(inplace=True),
nn.MaxPool2d(2,2)
)
self.fc = nn.Sequential(
nn.Linear(row // 4 * col // 4 * 128, 128),
nn.Sigmoid()
)
def embed(self, x):
x = self.convolution(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def forward(self, x, y):
embed_x = self.embed(x)
embed_y = self.embed(y)
l1_distance = torch.abs(embed_x - embed_y)
result = self.predict(l1_distance)
return result
epochs = 1000
rnd = 1000
M = 32
N = 20
K = 250
DATA_FILE_FORMAT = os.path.join(os.getcwd(), '%s_omni.pkl')
train_filepath = DATA_FILE_FORMAT % 'train'
train_set = omniglot.TrainSiameseDataset(train_filepath)
train_sampler = omniglot.SiameseSampler(train_set, rnd, M, False)
trainloader = torch.utils.data.DataLoader(train_set, batch_size=M, shuffle=True, sampler=train_sampler, num_workers=4)
test_filepath = DATA_FILE_FORMAT % 'test'
test_set = omniglot.TestSiameseDataset(test_filepath)
test_sampler = omniglot.SiameseSampler(test_set, K, N, True)
testloader = torch.utils.data.DataLoader(test_set, batch_size=N, shuffle=False, sampler=test_sampler, num_workers=4)
#torch.cuda.set_device(1)
net = Net(input_shape=(1,28,28))
net.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=1e-3)
for epoch in range(epochs):
running_loss = 0
for i, data in enumerate(trainloader, 0):
optimizer.zero_grad()
inputs, labels = data
left, right = inputs
left, right, labels = Variable(left.cuda()), Variable(right.cuda()), Variable(labels.cuda())
y_hat = net(left, right)
loss = criterion(y_hat, labels)
loss.backward()
optimizer.step()
running_loss += loss.data[0]
if i == len(trainloader)-1:
print("[{0:d}, {1:5d}] loss: {2:.3f}".format((epoch+1), (i+1), (running_loss / len(trainloader))))
running_loss = 0.0
print('Finished Training')
total = 0
correct = 0
print("Evaluating model on {0} unique {1}-way one-shot learning tasks ...".format(K,N))
for i, data in enumerate(testloader, 0):
inputs, labels = data
x, y = inputs
x, y = Variable(x.cuda()), Variable(y.cuda())
labels = labels.cuda()
y_hat = net(x, y)
_, predicted = torch.max(y_hat.data, 1)
if torch.eq(predicted, labels).sum() == N:
correct += 1
total += 1
print('Accuracy {0}% for {1}-way one-shot learning: {2}'.format(100 * correct / total, N, correct))