-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtdmm_inference.py
61 lines (46 loc) · 2.17 KB
/
tdmm_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import cv2
import torch
import torch.nn.functional as F
import numpy as np
from argparse import ArgumentParser
from modules.tdmm_estimator import TDMMEstimator
from torch.utils.data import DataLoader
from frames_dataset import FramesDataset, ImageDataset
from tqdm import tqdm
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--data_dir", default="", help="directory containing images to inference")
parser.add_argument("--gpu", action="store_true", help="run the inference on gpu")
parser.add_argument("--with_eye", action="store_true", help="use eye part for extracting texture")
parser.add_argument("--tdmm_checkpoint", default=None, help="path to checkpoint of the tdmm estimator model to restore")
opt = parser.parse_args()
checkpoint = torch.load(opt.tdmm_checkpoint, map_location=torch.device('cpu'))
tdmm = TDMMEstimator()
tdmm.load_state_dict(checkpoint['tdmm'], strict=False)
if opt.gpu:
tdmm = tdmm.cuda()
dataset = ImageDataset(data_dir=opt.data_dir, meta_dir=None, augmentation_params=None)
dataloader = DataLoader(dataset, batch_size=1, num_workers=1)
tdmm.eval()
for i, x in tqdm(enumerate(dataloader)):
if opt.gpu:
x['image'] = x['image'].cuda()
codedict = tdmm.encode(x['image'])
verts, transformed_verts, landmark_2d = tdmm.decode_flame(codedict)
# extract albedo and rendering
albedo = tdmm.extract_texture(x['image'], transformed_verts, with_eye=opt.with_eye)
outputs = tdmm.render(transformed_verts, transformed_verts, albedo)
image = x['image'].squeeze().permute(1, 2, 0)
source = outputs['source'].squeeze().permute(1, 2, 0).detach()
normal_map = outputs['source_normal_images'].squeeze().permute(1, 2, 0).detach()
if opt.gpu:
image = image.cpu()
normal_map = normal_map.cpu()
source = source.cpu()
image = image.numpy()
source = source.numpy()
normal_map = normal_map.numpy()
cv2.imshow('input', image[..., ::-1])
cv2.imshow('source', source[..., ::-1])
cv2.imshow('normal', normal_map)
cv2.waitKey(0)