diff --git a/.gitignore b/.gitignore
index 2baecac0f9..7106fe50ab 100644
--- a/.gitignore
+++ b/.gitignore
@@ -150,3 +150,4 @@ deployment/bentoml/mednist_classifier_bentoml.py
deployment/ray/mednist_classifier_start.py
*.nii.gz
3d_segmentation/out
+*.nsys-rep
diff --git a/acceleration/fast_training_tutorial.ipynb b/acceleration/fast_training_tutorial.ipynb
index 30c405581c..dcfe2d295b 100644
--- a/acceleration/fast_training_tutorial.ipynb
+++ b/acceleration/fast_training_tutorial.ipynb
@@ -35,21 +35,30 @@
]
},
{
- "cell_type": "code",
- "execution_count": 2,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Note: you may need to restart the kernel to use updated packages.\n"
- ]
+ "source": [
+ "This cell verifies that you have key packages installed and sets up the matplotlib environment.\n",
+ "\n",
+ "Important: if you are interested in profiling, comment out this cell after you finish the checks."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "vscode": {
+ "languageId": "python"
}
- ],
+ },
+ "outputs": [],
"source": [
- "!python -c \"import monai\" || pip install -q \"monai-weekly[nibabel, tqdm]\"\n",
- "!python -c \"import matplotlib\" || pip install -q matplotlib\n",
+ "# if profiling, comment out this cell to ensure the converted python script runs smoothly\n",
+ "\n",
+ "!python3 -c \"import monai\" || pip install -q \"monai-weekly[nibabel, tqdm]\"\n",
+ "!python3 -c \"import matplotlib\" || pip install -q matplotlib\n",
+ "!python3 -c \"import nvtx\" || pip install -q nvtx\n",
+ "\n",
"%matplotlib inline"
]
},
@@ -63,7 +72,11 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {},
+ "metadata": {
+ "vscode": {
+ "languageId": "python"
+ }
+ },
"outputs": [],
"source": [
"# Copyright 2020 MONAI Consortium\n",
@@ -118,6 +131,11 @@
")\n",
"from monai.utils import set_determinism\n",
"\n",
+ "# for profiling\n",
+ "import nvtx\n",
+ "from monai.utils.nvtx import Range\n",
+ "import contextlib # to improve code readability (combining training/validation loop with and without profiling)\n",
+ "\n",
"print_config()"
]
},
@@ -125,7 +143,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Setup data directory\n",
+ "## Setup data & output directories\n",
"\n",
"You can specify a directory with the `MONAI_DATA_DIRECTORY` environment variable. \n",
"This allows you to save results and reuse downloads. \n",
@@ -134,23 +152,115 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "root dir is: /workspace/data/medical\n"
- ]
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "python"
}
- ],
+ },
+ "outputs": [],
"source": [
"directory = os.environ.get(\"MONAI_DATA_DIRECTORY\")\n",
"root_dir = tempfile.mkdtemp() if directory is None else directory\n",
"print(f\"root dir is: {root_dir}\")"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "By default, outputs will go to `outputs/`. \n",
+ "\n",
+ "You can run this tutorial twice, once with profiling and once without, and the outputs will not conflict with each other. \n",
+ "- When profiling, the output is `outputs/output_base.nsys-rep`, which you can then visualize using the GUI of Nsight systems (a brief guide is provided in the \"Profiling visualization\" section below).\n",
+ "- When not profiling, the outputs are `outputs/loss_dice_comparison.png`, `outputs/metric_time_epochs.png`, and `outputs/total_epoch_time_comparison.png`.\n",
+ "\n",
+ "We set up the tutorial such that figures are only generated when not profiling, but that does not have to be the case. In general, the figures make more sense when training is run for a higher number of epochs (e.g., hundreds), which is usually not the case when profiling."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "vscode": {
+ "languageId": "python"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# outputs\n",
+ "\n",
+ "out_dir = \"outputs/\"\n",
+ "\n",
+ "if not os.path.exists(out_dir):\n",
+ " os.makedirs(out_dir)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Profiling"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This section sets up profiling for this tutorial.\n",
+ "\n",
+ "The number of epochs is automatically set based on whether profiling is being performed, but you can modify as needed.\n",
+ "\n",
+ "- If you are not interested in profiling, please set `profiling = False` and move on.\n",
+ "\n",
+ "- If you are profiling:\n",
+ "\n",
+ " - Because of the currently supported functionality of Nsight systems (`nsys`), profiling can only be performed from the terminal, and not from within this tutorial. For more information, including installation, refer to the [NVIDIA Nsight Systems page](https://developer.nvidia.com/nsight-systems).\n",
+ " - Perform the following steps:\n",
+ " \n",
+ " 1) Make sure `nsys` is installed;\n",
+ " \n",
+ " 2) Set `profiling = True`;\n",
+ " \n",
+ " 3) Make sure all lines in \"Setup environment\" (first code cell in this tutorial, above) are commented out;\n",
+ " \n",
+ " 4) Save this notebook;\n",
+ " \n",
+ " 5) Open the terminal and ensure that you are in the directory of this notebook, then run this command:\n",
+ " `jupyter nbconvert fast_training_tutorial.ipynb --to python && nsys profile --output ./outputs/output_base --force-overwrite true --trace-fork-before-exec true python3 fast_training_tutorial.py ; rm fast_training_tutorial.py`\n",
+ " \n",
+ " This command converts the notebook to a Python script locally and runs `nsys`. The output file is `outputs/output_base.nsys-rep`, but you can modify `--output` to specify the desired location."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "vscode": {
+ "languageId": "python"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "profiling = False\n",
+ "\n",
+ "# if profiling = True, it is recommended to set max_epochs = 6 for faster prototyping\n",
+ "# to see the trend in training curve and dice results, set max_epochs to be larger (600)\n",
+ "# note that before optimization, training can be quite a bit slower\n",
+ "if profiling:\n",
+ " max_epochs = 6\n",
+ "else:\n",
+ " max_epochs = 600\n",
+ "\n",
+ "# to improve readability\n",
+ "\n",
+ "\n",
+ "def range_func(x, y): return Range(x)(y) if profiling else y\n",
+ "\n",
+ "\n",
+ "no_profiling = contextlib.nullcontext()"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -162,8 +272,12 @@
},
{
"cell_type": "code",
- "execution_count": 3,
- "metadata": {},
+ "execution_count": null,
+ "metadata": {
+ "vscode": {
+ "languageId": "python"
+ }
+ },
"outputs": [],
"source": [
"resource = \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task09_Spleen.tar\"\n",
@@ -184,8 +298,12 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "metadata": {},
+ "execution_count": 19,
+ "metadata": {
+ "vscode": {
+ "languageId": "python"
+ }
+ },
"outputs": [],
"source": [
"train_images = sorted(\n",
@@ -210,51 +328,56 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "metadata": {},
+ "execution_count": 8,
+ "metadata": {
+ "vscode": {
+ "languageId": "python"
+ }
+ },
"outputs": [],
"source": [
- "def transformations(fast=False):\n",
+ "def transformations(fast=False, device='cuda:0'):\n",
" train_transforms = [\n",
- " LoadImaged(keys=[\"image\", \"label\"]),\n",
- " AddChanneld(keys=[\"image\", \"label\"]),\n",
- " Orientationd(keys=[\"image\", \"label\"], axcodes=\"RAS\"),\n",
- " Spacingd(\n",
+ " range_func(\"LoadImage\", LoadImaged(keys=[\"image\", \"label\"])),\n",
+ " range_func(\"AddChannel\", AddChanneld(keys=[\"image\", \"label\"])),\n",
+ " range_func(\"Orientation\", Orientationd(keys=[\"image\", \"label\"], axcodes=\"RAS\")),\n",
+ " range_func(\"Spacing\", Spacingd(\n",
" keys=[\"image\", \"label\"],\n",
" pixdim=(1.5, 1.5, 2.0),\n",
" mode=(\"bilinear\", \"nearest\"),\n",
- " ),\n",
- " ScaleIntensityRanged(\n",
- " keys=[\"image\"],\n",
- " a_min=-57,\n",
- " a_max=164,\n",
- " b_min=0.0,\n",
- " b_max=1.0,\n",
- " clip=True,\n",
- " ),\n",
- " CropForegroundd(keys=[\"image\", \"label\"], source_key=\"image\"),\n",
+ " )),\n",
+ " range_func(\"ScaleIntensityRange\",\n",
+ " ScaleIntensityRanged(\n",
+ " keys=[\"image\"],\n",
+ " a_min=-57,\n",
+ " a_max=164,\n",
+ " b_min=0.0,\n",
+ " b_max=1.0,\n",
+ " clip=True,\n",
+ " )),\n",
+ " range_func(\"CropForeground\", CropForegroundd(keys=[\"image\", \"label\"], source_key=\"image\")),\n",
" # pre-compute foreground and background indexes\n",
" # and cache them to accelerate training\n",
- " FgBgToIndicesd(\n",
+ " range_func(\"Indexing\", FgBgToIndicesd(\n",
" keys=\"label\",\n",
" fg_postfix=\"_fg\",\n",
" bg_postfix=\"_bg\",\n",
" image_key=\"image\",\n",
- " ),\n",
+ " )),\n",
" # change to execute transforms with Tensor data\n",
- " EnsureTyped(keys=[\"image\", \"label\"]),\n",
+ " range_func(\"EnsureType\", EnsureTyped(keys=[\"image\", \"label\"])),\n",
" ]\n",
+ "\n",
" if fast:\n",
" # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch\n",
- " train_transforms.append(\n",
- " ToDeviced(keys=[\"image\", \"label\"], device=\"cuda:0\")\n",
- " )\n",
+ " train_transforms.append(range_func(\"ToDevice\", ToDeviced(keys=[\"image\", \"label\"], device=device)))\n",
+ "\n",
" train_transforms.append(\n",
" # randomly crop out patch samples from big\n",
" # image based on pos / neg ratio\n",
" # the image centers of negative samples\n",
" # must be in valid image area\n",
- " RandCropByPosNegLabeld(\n",
+ " range_func(\"RandCrop\", RandCropByPosNegLabeld(\n",
" keys=[\"image\", \"label\"],\n",
" label_key=\"label\",\n",
" spatial_size=(96, 96, 96),\n",
@@ -263,7 +386,7 @@
" num_samples=4,\n",
" fg_indices_key=\"label_fg\",\n",
" bg_indices_key=\"label_bg\",\n",
- " ),\n",
+ " )),\n",
" )\n",
"\n",
" val_transforms = [\n",
@@ -289,7 +412,7 @@
" if fast:\n",
" # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch\n",
" val_transforms.append(\n",
- " ToDeviced(keys=[\"image\", \"label\"], device=\"cuda:0\")\n",
+ " ToDeviced(keys=[\"image\", \"label\"], device=device)\n",
" )\n",
"\n",
" return Compose(train_transforms), Compose(val_transforms)"
@@ -308,24 +431,31 @@
"3. `ToDeviced` transform: to move data to GPU and cache with `CacheDataset`, then execute random transforms on GPU directly, avoid CPU -> GPU sync in every epoch. Please note that not all the MONAI transforms support GPU operation so far, still working in progress.\n",
"4. `ThreadDataLoader`: uses multi-threads instead of multi-processing, faster than `DataLoader` in light-weight task as we already cached the results of most computation.\n",
"5. `DiceCE` loss function: computes Dice loss and Cross Entropy Loss, returns the weighted sum of these two losses.\n",
- "6. Analyzed the training curve and tuned algorithm: Use `SGD` optimizer, different network parameters, etc."
+ "6. Analyzed the training curve and tuned algorithm: Use `SGD` optimizer, different network parameters, etc.\n",
+ "\n",
+ "(A note on code: to improve readability and support the profiling flag, we used the `with nvtx(...) if profiling else no_profiling` context pattern, where `no_profiling` is a null context from Python's native `contextlib` with no effect on the code. An acknowledgement is provided here[1](#fn1).)"
]
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 16,
"metadata": {
- "scrolled": true
+ "vscode": {
+ "languageId": "python"
+ }
},
"outputs": [],
"source": [
"def train_process(fast=False):\n",
- " max_epochs = 600\n",
" learning_rate = 2e-4\n",
" val_interval = 5 # do validation for every epoch\n",
- " device = torch.device(\"cuda:0\")\n",
"\n",
- " train_trans, val_trans = transformations(fast=fast)\n",
+ " if torch.cuda.is_available():\n",
+ " device = torch.device(\"cuda:0\")\n",
+ " else:\n",
+ " raise RuntimeError('this tutorial is intended for GPU, but no CUDA device is available')\n",
+ "\n",
+ " train_trans, val_trans = transformations(fast=fast, device=device)\n",
" # set CacheDataset, ThreadDataLoader and DiceCE loss for MONAI fast training\n",
" if fast:\n",
" # as `RandCropByPosNegLabeld` crops from the cached content and `deepcopy`\n",
@@ -344,6 +474,7 @@
" # disable multi-workers because `ThreadDataLoader` works with multi-threads\n",
" train_loader = ThreadDataLoader(train_ds, num_workers=0, batch_size=4, shuffle=True)\n",
" val_loader = ThreadDataLoader(val_ds, num_workers=0, batch_size=1)\n",
+ "\n",
" loss_function = DiceCELoss(\n",
" include_background=False,\n",
" to_onehot_y=True,\n",
@@ -411,87 +542,132 @@
" metric_values = []\n",
" epoch_times = []\n",
" total_start = time.time()\n",
+ "\n",
" for epoch in range(max_epochs):\n",
" epoch_start = time.time()\n",
" print(\"-\" * 10)\n",
" print(f\"epoch {epoch + 1}/{max_epochs}\")\n",
- " model.train()\n",
- " epoch_loss = 0\n",
- " step = 0\n",
- " for batch_data in train_loader:\n",
- " step_start = time.time()\n",
- " step += 1\n",
- " inputs, labels = (\n",
- " batch_data[\"image\"].to(device),\n",
- " batch_data[\"label\"].to(device),\n",
- " )\n",
- " optimizer.zero_grad()\n",
- " # set AMP for MONAI training\n",
- " if fast:\n",
- " with torch.cuda.amp.autocast():\n",
- " outputs = model(inputs)\n",
- " loss = loss_function(outputs, labels)\n",
- " scaler.scale(loss).backward()\n",
- " scaler.step(optimizer)\n",
- " scaler.update()\n",
- " else:\n",
- " outputs = model(inputs)\n",
- " loss = loss_function(outputs, labels)\n",
- " loss.backward()\n",
- " optimizer.step()\n",
- " epoch_loss += loss.item()\n",
- " epoch_len = math.ceil(len(train_ds) / train_loader.batch_size)\n",
- " print(\n",
- " f\"{step}/{epoch_len}, train_loss: {loss.item():.4f}\"\n",
- " f\" step time: {(time.time() - step_start):.4f}\"\n",
- " )\n",
- " epoch_loss /= step\n",
- " epoch_loss_values.append(epoch_loss)\n",
- " print(f\"epoch {epoch + 1} average loss: {epoch_loss:.4f}\")\n",
- "\n",
- " if (epoch + 1) % val_interval == 0:\n",
- " model.eval()\n",
- " with torch.no_grad():\n",
- " for val_data in val_loader:\n",
- " val_inputs, val_labels = (\n",
- " val_data[\"image\"].to(device),\n",
- " val_data[\"label\"].to(device),\n",
+ "\n",
+ " # profiling: full epoch\n",
+ " with nvtx.annotate(\"epoch\", color=\"red\") if profiling else no_profiling:\n",
+ " model.train()\n",
+ " epoch_loss = 0\n",
+ " train_loader_iterator = iter(train_loader)\n",
+ "\n",
+ " # using step instead of iterate through train_loader directly to track data loading time\n",
+ " # steps are 1-indexed for printing and calculation purposes\n",
+ " for step in range(1, len(train_loader) + 1):\n",
+ " step_start = time.time()\n",
+ "\n",
+ " # profiling: train dataload\n",
+ " with nvtx.annotate(\"dataload\", color=\"red\") if profiling else no_profiling:\n",
+ " # rng_train_dataload = nvtx.start_range(message=\"dataload\", color=\"red\")\n",
+ " batch_data = next(train_loader_iterator)\n",
+ " inputs, labels = (\n",
+ " batch_data[\"image\"].to(device),\n",
+ " batch_data[\"label\"].to(device),\n",
" )\n",
- " roi_size = (160, 160, 160)\n",
- " sw_batch_size = 4\n",
- " # set AMP for MONAI validation\n",
- " if fast:\n",
+ "\n",
+ " optimizer.zero_grad()\n",
+ " # set AMP for MONAI training\n",
+ " if fast:\n",
+ " # profiling: forward\n",
+ " with nvtx.annotate(\"forward\", color=\"green\") if profiling else no_profiling:\n",
" with torch.cuda.amp.autocast():\n",
- " val_outputs = sliding_window_inference(\n",
- " val_inputs, roi_size, sw_batch_size, model\n",
+ " outputs = model(inputs)\n",
+ " loss = loss_function(outputs, labels)\n",
+ "\n",
+ " # profiling: backward\n",
+ " with nvtx.annotate(\"backward\", color=\"blue\") if profiling else no_profiling:\n",
+ " scaler.scale(loss).backward()\n",
+ "\n",
+ " # profiling: update\n",
+ " with nvtx.annotate(\"update\", color=\"yellow\") if profiling else no_profiling:\n",
+ " scaler.step(optimizer)\n",
+ " scaler.update()\n",
+ " else:\n",
+ " # profiling: forward\n",
+ " with nvtx.annotate(\"forward\", color=\"green\") if profiling else no_profiling:\n",
+ " outputs = model(inputs)\n",
+ " loss = loss_function(outputs, labels)\n",
+ "\n",
+ " # profiling: backward\n",
+ " with nvtx.annotate(\"backward\", color=\"blue\") if profiling else no_profiling:\n",
+ " loss.backward()\n",
+ "\n",
+ " # profiling: update\n",
+ " with nvtx.annotate(\"update\", color=\"yellow\") if profiling else no_profiling:\n",
+ " optimizer.step()\n",
+ "\n",
+ " epoch_loss += loss.item()\n",
+ " epoch_len = math.ceil(len(train_ds) / train_loader.batch_size)\n",
+ " print(\n",
+ " f\"{step}/{epoch_len}, train_loss: {loss.item():.4f}\"\n",
+ " f\" step time: {(time.time() - step_start):.4f}\"\n",
+ " )\n",
+ " epoch_loss /= step\n",
+ " epoch_loss_values.append(epoch_loss)\n",
+ " print(f\"epoch {epoch + 1} average loss: {epoch_loss:.4f}\")\n",
+ "\n",
+ " if (epoch + 1) % val_interval == 0:\n",
+ " model.eval()\n",
+ " with torch.no_grad():\n",
+ " val_loader_iterator = iter(val_loader)\n",
+ "\n",
+ " for val_step in range(len(val_loader)):\n",
+ " # profiling: val dataload\n",
+ " with nvtx.annotate(\"dataload\", color=\"red\") if profiling else no_profiling:\n",
+ " val_data = next(val_loader_iterator)\n",
+ " val_inputs, val_labels = (\n",
+ " val_data[\"image\"].to(device),\n",
+ " val_data[\"label\"].to(device),\n",
" )\n",
- " else:\n",
- " val_outputs = sliding_window_inference(\n",
- " val_inputs, roi_size, sw_batch_size, model\n",
+ "\n",
+ " roi_size = (160, 160, 160)\n",
+ " sw_batch_size = 4\n",
+ "\n",
+ " # profiling: sliding window\n",
+ " with nvtx.annotate(\"sliding window\", color=\"green\") if profiling else no_profiling:\n",
+ " # set AMP for MONAI validation\n",
+ " if fast:\n",
+ " with torch.cuda.amp.autocast():\n",
+ " val_outputs = sliding_window_inference(\n",
+ " val_inputs, roi_size, sw_batch_size, model\n",
+ " )\n",
+ " else:\n",
+ " val_outputs = sliding_window_inference(\n",
+ " val_inputs, roi_size, sw_batch_size, model\n",
+ " )\n",
+ "\n",
+ " # profiling: decollate batch\n",
+ " with nvtx.annotate(\"decollate batch\", color=\"blue\") if profiling else no_profiling:\n",
+ " val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]\n",
+ " val_labels = [post_label(i) for i in decollate_batch(val_labels)]\n",
+ "\n",
+ " # profiling: compute metric\n",
+ " with nvtx.annotate(\"compute metric\", color=\"yellow\") if profiling else no_profiling:\n",
+ " dice_metric(y_pred=val_outputs, y=val_labels)\n",
+ "\n",
+ " metric = dice_metric.aggregate().item()\n",
+ " dice_metric.reset()\n",
+ " metric_values.append(metric)\n",
+ " if metric > best_metric:\n",
+ " best_metric = metric\n",
+ " best_metric_epoch = epoch + 1\n",
+ " best_metrics_epochs_and_time[0].append(best_metric)\n",
+ " best_metrics_epochs_and_time[1].append(best_metric_epoch)\n",
+ " best_metrics_epochs_and_time[2].append(\n",
+ " time.time() - total_start\n",
" )\n",
- " val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]\n",
- " val_labels = [post_label(i) for i in decollate_batch(val_labels)]\n",
- " dice_metric(y_pred=val_outputs, y=val_labels)\n",
- "\n",
- " metric = dice_metric.aggregate().item()\n",
- " dice_metric.reset()\n",
- " metric_values.append(metric)\n",
- " if metric > best_metric:\n",
- " best_metric = metric\n",
- " best_metric_epoch = epoch + 1\n",
- " best_metrics_epochs_and_time[0].append(best_metric)\n",
- " best_metrics_epochs_and_time[1].append(best_metric_epoch)\n",
- " best_metrics_epochs_and_time[2].append(\n",
- " time.time() - total_start\n",
+ " torch.save(model.state_dict(), os.path.join(root_dir, \"best_metric_model.pt\"))\n",
+ " print(\"saved new best metric model\")\n",
+ " print(\n",
+ " f\"current epoch: {epoch + 1} current\"\n",
+ " f\" mean dice: {metric:.4f}\"\n",
+ " f\" best mean dice: {best_metric:.4f}\"\n",
+ " f\" at epoch: {best_metric_epoch}\"\n",
" )\n",
- " torch.save(model.state_dict(), os.path.join(root_dir, \"best_metric_model.pt\"))\n",
- " print(\"saved new best metric model\")\n",
- " print(\n",
- " f\"current epoch: {epoch + 1} current\"\n",
- " f\" mean dice: {metric:.4f}\"\n",
- " f\" best mean dice: {best_metric:.4f}\"\n",
- " f\" at epoch: {best_metric_epoch}\"\n",
- " )\n",
+ "\n",
" print(\n",
" f\"time consuming of epoch {epoch + 1} is:\"\n",
" f\" {(time.time() - epoch_start):.4f}\"\n",
@@ -524,7 +700,12 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {},
+ "metadata": {
+ "scrolled": true,
+ "vscode": {
+ "languageId": "python"
+ }
+ },
"outputs": [],
"source": [
"set_determinism(seed=0)\n",
@@ -553,7 +734,11 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {},
+ "metadata": {
+ "vscode": {
+ "languageId": "python"
+ }
+ },
"outputs": [],
"source": [
"set_determinism(seed=0)\n",
@@ -573,6 +758,43 @@
")"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Profiling visualization"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Here we give a brief overview of key observations from the `nsys-rep` output file when opened in Nsight systems (2022.2.1).\n",
+ "\n",
+ "In the GUI, select File -> Open -> output_base.nsys-rep. Here is a sample of the display:\n",
+ "\n",
+ "![png](figures/nsys-all-annotated.png)\n",
+ "- To get a better view of details, you can left-click and select a horizontal section, then right-click and \"Zoom into Selection.\" To return, right-click and select \"Reset Zoom.\"\n",
+ "- Sections B and C show training before and after acceleration (when fast=False and fast=True, accordingly). Clearly, MONAI optimized training is much faster than regular PyTorch training. B and C both contain two rows; the upper row shows per-epoch time, and the lower row shows per-action time (user-defined, like dataloading, forward, backward, etc.).\n",
+ "- Section A shows GPU utilization, where the height of the blue bars represents utilization rate. Regular PyTorch training shows sporadic and varying levels of GPU utilization, while MONAI optimized training shows consistent and high levels of GPU utilization.\n",
+ "\n",
+ "Expanding one more thread in the lower left corner and several more threads below \\[4648\\], we see the following:\n",
+ "\n",
+ "![png](figures/nsys-transforms-annotated.png)\n",
+ "\n",
+ "Sections D and E both include information on the transform chain.\n",
+ "- Section E: In MONAI optimized training, results of all transforms in the chain until the first randomized transform is stored to prevent repeated operations. This explains why E is chronologically before any of the training epochs in the figure.\n",
+ "- Section D: In regular PyTorch training, CacheDataset is not in use, and the transform chain is performed every epoch on all data used.\n",
+ "\n",
+ "Here is the display of the transform chain when zoomed in:\n",
+ "![png](figures/nsys-fast-transform.png)\n",
+ "\n",
+ "And a display of one training epoch of MONAI optimized training when zoomed in:\n",
+ "![png](figures/nsys-epoch-short.png)\n",
+ "\n",
+ "Notice that the per-epoch time is >20 times faster than the regular PyTorch training."
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -582,12 +804,16 @@
},
{
"cell_type": "code",
- "execution_count": 52,
- "metadata": {},
+ "execution_count": 23,
+ "metadata": {
+ "vscode": {
+ "languageId": "python"
+ }
+ },
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAALJCAYAAAC+1UUaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5gkVbm432/i7s7m3WGBXZacQdKSRAUVBVSCogiIiBcJV7nmHLii4hX9qRgwICKiIiKKooIoIIISl5xxWcLuEnZyTj19fn+cqunqmuo41dX1wXmfZ57urq6pfut0dfVXX3/nHDHG4HA4HA6Hw+FwvNxoqLeAw+FwOBwOh8NRD1wg7HA4HA6Hw+F4WeICYYfD4XA4HA7HyxIXCDscDofD4XA4Xpa4QNjhcDgcDofD8bLEBcIOh8PhcDgcjpclLhB+mSMiXxSRX9bbYyaIyNMicmi9PRwOh0MLaTr3vxTP4SJyrYi8p94ejtK4QDgleCeCEREZFJEXROQSEZlbb69KEZGbRGTU2w//70/19gojIoeIiBGRT9XbJQ68fdmu3h4Oh6MyXgrnfhH5kYhcGrF8DxEZE5HFM9j2Jd757ejQ8m97y0+pdtszcDIiMuS9Z10icoOIvDO4jjHmCGPMz5N2c1SOC4TTxZHGmLnAnsBewGfqq1McEWks8NRZxpi5gb8jExUrj/cA3cDJtdi4iDTVYrsOh+MlifZz/8+Bt4lIW2j5u4E/G2O6Z/iSTxA4V3vn1+OAJ2e43Zmwh/ee7QhcAnxfRP63jj6OKnGBcAoxxrwAXIc9KQIgIgeIyK0i0isi94vIIYHnthaRm0VkQESuF5EL/J+8vMzn+uD2i/0MJSK/9bISfd42dw08d4mI/FBErhGRIeC1leyX7yIinxWRTs/jXYHnF4jIpSLSISLPiMjnRaQh8PxpIvKot5+PiMjegc3vKSIPeN6/EZFZRTzagLcDHwC2F5FV3vJPiciVoXW/IyLfDfj9VESeF5ENIvIV/wtBRE4RkX97WYou4Isisq2I3OhlDDpF5FcisjCw7b1F5F5vf37reX8l8PxbROQ+7z2/VUReUUl7l2pTEdlORP7ptVmniPzGWy7efmwUkX4ReVBEdqv0tR0OR2VoPfcbY24DNgDHBv6nETgRuLTUubAM/gS8SkQWeY8PBx4AXgjtw3953xE9InKdiGwZeO47IrLOO6fdLSKvDjz3RRG5wjtXDojIw/73QimMMZ3GmF8A/w18RkSWeNu8SUTeF3iNyO8vEdlcRH7nnaOfEpEPVtAujhhwgXAKEZEVwBHAGu/xcuAvwFeAxcDHgd+JSLv3L5cBdwJLgC9ir8Kr5Vpge2AT4B7gV6HnTwTOBeYB/6pi+5sCS4Hl2KzshSKyo/fc94AFwDbAwdgMwHsBROQd2H07GZgPHAV0BbZ7HPbkuDXwCuCUIg5vAwaB32K/dPw6rsuBN4nIPO81G73tXuY9fwmQAbbDZm3eCEyd6ID9gbXAMmwbCfB/wObAzsAW3j4gIi3AVd42FwO/Bt7qb0hE9gIuBs7Avq8/Bq4WkdYi+xVFwTYFvgz8DVgErPDWxduv1wA7eP97HPlt7XA4aoDyc/+l5P/CdijQDFxDkXNhmYwCfwSO9x6f7L3eFGJLJz6LPb+3A7dgz6s+d2EvMBZj2+23kp8wOQr7HbAQuBr4fgV+eH5NwH7hJwp9f3lJiT8B92O/E18PfFhEDqvwtR0zwRjj/lLwBzyNDc4GAAPcACz0nvsU8IvQ+n4AtxIbnM0JPPdL4Jfe/UOA9RGvdah3/4v+uhFOCz2XBd7jS4BLS+zHTcAw0Bv4+3LAJQO0Bda/AvgC0AiMA7sEnjsDuCmwvx8q0nYnBR5/HfhREcfrgfO9+ycAHUCz9/hfwMne/TcAT3r3lwFjwOzAdk4A/uHdPwV4tkTbHAPc691/DTaDIoHn/wV8xbv/Q7/dAs8/DhxcYNsG2C60rFSbXgpcCKwI/d/rsD9FHgA01Puz4f7c30v5j5fOuX8lMOGfT7CB9HcKrDt1Lgx7Rax7CfZC4FXAbZ7bi8Bs75x5irfetcCpgf9rwH4XbVlguz3Y8ga/La4PPLcLMFJkX6edb73lLwDv8u7fBLwv8J59KGL9/Ql9b2DLYn5W7+Py5fTnMsLp4hhjzDzsCWwnbOYUYEvgHd5PY70i0os9KWyGvcLuNsYMB7azrpoXF5FGEfmaiDwpIv3YkxMBj3K3/UFjzMLA3xcCz/UYY4YCj5/x9mEpNnvwTOi55d79LSheDxb8iWwYiOxsIiJbYH/W87MdfwRmAW/2Hl+GDXDBZkD8bPCWnt/zgffgx9jsiU9e24jIMhG5XGwZRT/2S8pvy82BDcY780X8/5bAx0Lv+Rbe/5VLqTb9JDZTc6f3U+B/ARhjbsRmQy4ANorIhSIyv4LXdTgclaH+3G+MeRa4GThJbGe/Y/CytiXOhWVhjPkXNtP7OWzd8UholS2B7wTaqRt7flvuOXzcK03o855fEHIIf4fMkgr6eohIs+cXVQ9d6PtrS2Dz0Pv7WWzixZEQLhBOIcaYf2Kvgv+ft2gdNisQDC7bjDFfA54HFovInMAmtgjcHwKmnvN+7m8nmhOBo7E/aS0AtvL/LahX1U7lWCT5HSpWAs8Bndhswpah5zZ499cB287wtcH+dNgA/ElEXsCWMswiVx7xW+AQ7yfKt5ILhNdhM8JLA+/BfGPMroFth9vmq96y3Y0x84GTyLXl88ByEQm2bfB9WwecG3rP5xhjgj/1laJomxpjXjDGnGaM2RybKf6BeCNPGGO+a4zZB5sZ2QH4RAWv63A4quAlcO7/OfYceyzwlDHmbm95sXNhJfwS+BihsgiPdcAZobaabYy51asH/iS2zGuRMWYh0FelQyGOxmbo7yzgFvX9tQ7bTkHnecaYN8Xo5SiBC4TTy/nAG0RkD+yH/0gROcy7cp8ltiPECmPMM8BqbOesFhE5EAiO0vAE9sr2zd4V6+eBQnWm87DBXhf2BPrV2uwa53iurwbeAvzWGDOJLZM4V0TmeZ0cPordd4CLgI+LyD5i2S7YEaIC3gOcg60V8/+OxdYGLzHGdGB/0voZ9gT1KIAx5nlsPe03RWS+iDSI7QBycJHXmof9ybPPq/ULBpO3AZPAWSLS5NW3BWvLfgKcKSL7e/vb5r2H84q8Xot3bMwK1L4VbFMReYcX8IP9mdAAWRHZ13vdZuyX6SiQLfK6DocjPs5H77n/d9iL7XOwQXFw+4XOhZXwXWzJ2s0Rz/0I21ltV5jqKPyOwOtnsGVwTSJyNrZWd8aIyGKxnb4vAM4zxkT1pyj0/XUnMCC2o/Zs7z3eTUT2jcPNUR4uEE4pXkB2KXC2MWYd9mrzs9gP8jrsicR//94FHIg9iX0F+A32pIYxpg94P/aDuAEb2OT1JA5wKfan8w3AI8DtVep/X/LHEb478NwL2KDrOWx5wpnGmMe85/7H81uLrf26DNthDGPMb7EdNS7D1tL9AdvpoWxE5ABsdvQCLxvq/12N7Zzil0Rchs2MXBbaxMlAC7ZteoArsT9RFuIcYG9s5uEvwO/9J4wx49hOHadi66hPAv5M7n1bDZyGLVHo8fxOKbGLDwMjgb/3UqRNgX2BO0RkENs55EPGmLXYL4ifeK/7DPa4+kaJ13Y4HDGg+dzvlb39Dtv5NtjZruC5sMLtdxtjbgiVlPnPXQWcB1zulV88hO14CLZG96/Yi4NnsBf3VZWRBLjfO3euwXaa/ogx5uwC3pHfX14C6C3YhMxT2F/xLsJm5R0JIRHHk0M5YofBeswYk6oxDcUO+/NLY8yKEqu+LBGRO7Cd/H5WbxeHw6GPtJ77HY404zLCLwG8n7K39X6uPxybQfhDnbUcJRCRg0VkU6804j3YYd/+Wm8vh8OhA3fudzhmjguEXxpsiq1rHcTWUP23Mebeuho5ymFH7PiRvdgOIG/3apEdjhkhIheLnRDloQLPi4h8V0TWiJ2IZu+o9Rypx537HY4Z4kojHA6H4yWGiLwGGxxdaoyZNiugiLwJWz/+JuxYpt8xxuyfrKXD4XDUH5cRdjgcjpcYxpibiR7P1OdobJBsjDG3AwtFpFjHT4fD4XhJUvZg0XGzdOlSs9VWW1X0P8YY8odd1YNWd+edLM47eapxv/vuuzuNMYXGZNXAcvJ7za/3luWV5ojI6cDpAG1tbfvsuOOO+L8iigjZbJaGhgay2SyNjY1kMhmamprIZDI0NjYyOTlJU1MTk5OTU+s1NDTkbcNv/6htRN362wr/mlntNnwHfxuTk5M0NjaW3FYa98k/jsP7VOx9SsM+TUxM0NzcXNH7lJZ9MsaU5aFpn+L8PNVinwodL6X26d577408b9ctEN5qq61YvXp1vV7e4XA4qkZEnim9ln6MMRdip+Fm1apVxp2zHQ6HVgqdt1WVRnR0dNRboWq0ujvvZHHeyaPZfQZsIH8WshXkZnGMBa3tqtUb9Lpr9Qa97lq9IX53VYFwe7veXyK1ujvvZHHeyaPZfQZcDZzsjR5xANAX94glWttVqzfoddfqDXrdtXpD/O6qAmF3BZM8zjtZnHfyaHYvhIj8GjuN944isl5EThWRM0XkTG+Va7CzDa7BziL4/rgdtLarVm/Q667VG/S6a/WG+N3rNnyaqzdzOBxaEZG7jTGr6u2RJO6c7XA4NFPovK0qI9zV1VVvharR6u68k8V5J49m9zSjtV21eoNed63eoNddqzfE764qEF60aFG9FapGq7vzThbnnTya3dOM1nbV6g163bV6g153rd4Qv7uqQLi/v7/eClWj1d15J4vzTh7N7mlGa7tq9Qa97lq9Qa+7Vm+I311VINzW1lZvharR6u68k8V5J49m9zSjtV21eoNed63eoNddqzfE764qEB4dHa23QtVodXfeyeK8k0eze5rR2q5avUGvu1Zv0Ouu1Rvid1cVCDc3N9dboWq0ujvvZHHeyaPZPc1obVet3qDXXas36HXX6g3xu6sKhLPZbL0Vqkaru/NOFuedPJrd04zWdtXqDXrdtXqDXnet3hC/u6pAuOXEE+Gzn623RlXUa7zmmeK8k8V5J49m9zSjtV21eoNed63eoNddqzfE764qEG74z3/g8cfrrVEVTU1N9VaoCuedLM47eTS7pxmt7arVG/S6q/OemJi6W9B9YAAmJ2vz+t3d8NxzM9pEyTbPZOCaayA8QkMKMslxHy+qAmHT0gJKC7zHxsbqrVAVzjtZnHfyaHZPM1rbVas36HWvu/c//gHvfz/ssw/sthv88IcwMhK97rXXwuLF8Mc/AkXcX/EKeOUrYf36eF3//GfYcUfYZhv4/OdhaMgG5hs2wPBw2Zsp6G0M/OlP1v/Nb4Y994Q774THHoM3vAE222x6cBw3jz4KTz+de3z33XDyyfCpT8Gvf834Y4/F+nKqAuGGOXOg3h+YKpkzZ069FarCeSeL804eze5pRmu7avWGFLobU1YGMXbv666DT37Svn6Y+++Hb30rf9lJJ8Gll8LChTBnjg2Kt94awlOK9/bC+94Hg4Nw2mmwcWO0uzGwbp0NIPfeG26+ufp9+cc/4Kij4J3vhGOPhSOPhOXL4W1vg3PPhU02gVmzYMUKaGuzgeo555Tc7DTvv/4VjjkG2tvt62Wz8L3v2duDDrKB8b//DRs3wl/+Up57Zye88EJl+zs0BAceCNtvb9v6k5+E/fe3Fx7f/jaceCJt3/9+ZdssgapAONPcrDYjPDAwUG+FqnDeyeK8k0eze5rR2q5avSGF7qeeCu94R8nVYvX++99tIPeNb8A990x//qtfhY99zJYugA28nnvO9j+64Qa44w646SZobbWBZ2dn7n8/9jF48UW45BLo64Mzz2Tojjvs6wX3c3zclkWcfDIsWmQDzEIZ5jDDw7b0YWICvvIVOPRQmxG9/3649Vb48Ifh9tvhssvgX/+C97wHPvc5+MEP7Ppz58IVV5R8mWlt/vnPwy232H35xS/gwQfhrLPg3nvhXe+y+/Lkk7DppvC735W3L0ceaQPzffe1fuVw+eW2bY85Bn75S/s+vuc98Mwz9gLk/vsZOO208rZVLsaYuvzts88+plKyb3qTMVX8XxrIZrP1VqgK550szjt5qnEHVps6nTvr9VfpOVvrMaHV25iE3c8/35j3v9/+/e530evstZcxW2xRclOxef/rX8bMmWPMrrsa09hozGc/m//8xIQxCxcaA8bcc49d9sAD9vHll+eve9ddxrS2GvOGNxjz9NPGnHeeXe/Tn7bPf/3r9rH/N39+7n+7u+2yb3/bmOuvt/d/9avS/tmsMZttlr/dE080ZmCg/DZ43/uMWbasjJcKtfmyZcacdlrp7b///cbMnm3M4GDpdbfZxpgddzRm553tvpSzH/vua8wuu9i22LDBmIceKu1eJoXO26oywuMiajPCXV1d9VaoCuedLM47eTS7pxmt7arVGxJ0HxuzmclLLoGLL7b3o9i40dauZjJFN1fSe906+9P///xP4czqU0/ZbOaKFTaze/DBcNVV+evccYctbwD4z3/s7ZNP2tttt81fd9Uq+P73bYZ5q61sfeorXwn/+7/2+Y9+FE49leGzzoIzz7SZZb8UY2jI3ra1wWtfa8ssfvrT4vsINr55/nlbm/vFL8Kvf22zonPnlv5fnyVLbEa5xMgKeW0+MWHfq803L739Y4+178Ff/1p63fFxW1bhl2r4bV6Ie++Fu+6CM84AEeuz667F3WNAVSDcumCB2kB46dKl9VaoCuedLM47eTS7pxmt7arVGxJ0Hx+3t+ecY//WrbPBVxBjbHCVzZYc4aCk97e+ZQPE73/fBqiPPJL//PAwvPWt9rWuuQaWLbM1tI8+av98rr0WGrywZ80ae1soEAZbo3r++fC1r8HDD9tShFmz7HONjXDRRcz53vdgiy1sKYTfhykYCDc0wHvfCzfeCGvX2udOPTU6kPTLFY44wgbcxx9vA8JKWLLEBraDg0VXy2vz55+379fy5aW3/5rXwNKlcOWVpdcdG4OWFtu5D0qP+vXjH9v2ffe7i64W93GuKhAeAbWd5To6OuqtUBXOO1mcd/Jodk8zWttVqzck6O4PH9bcDHvtZe/ff3/+Oj09ufWefbbo5op6d3fDT35i61Svu87W6H7wg7nnjbEd1x54wGZQ/YD2mGPsbTArfO21tiPW5pvnspNr1tg63kWLol//Qx+y2eBddokMSjs6OmzAC7kA2L/1O6SdcooNiH/0IxugX3yxdQ5nt/3gtZIMcJglS+xtiaxpXptv2GBvywmEm5ps2/75z6UTk+PjNhDefnvbdk88UXjdwUH41a9sp8BC70WUewyoCoRnK84It7e311uhKpx3sjjv5NHsnma0tqtWb0jQ3Q9wW1pgjz3s/XvvzV9n48bc/ahAuLNzqiNaUe8LLrCB5Sc/CW98o+2UdtddudEoHnzQdhw7+2w4/PDc/y1fDgccAL//vX38wgu289wRR8B22+WXRkRlg8ukvb19eiDsD2PmL99iCzjsMNvx629/s6NSrF9v9y2InxGeN69qn6KB8MUX26HhCLV5JYEw2PKIwcHppSdhxsdtp8PZs2HlyuIZ4euvt9t8z3tKvnzcx7mqQHjEGLWBcGew56kinHeyOO/k0eyeZrS2q1ZvSNDdL41obrbDd22+Odx3X/46L76Yux8VCJ96KvzXfwFFvEdG4LvftTWzu+1ml+2zjx3H1i9puPVWexsVQL31rXbEhXvvtdlksIHw9tvHFgh3dnYWzgj7ywE+8AGbFT3/fBsAH364HcHCr1mG2gfCP/uZvWDIZvPb3C9dKTcQPvRQewH00Y/azH8h/NIIsOURxQLhW26x6x54YMmXj/s4VxUIz1q4UG0gvMQ/OJXhvJPFeSePZvc0o7VdtXpDgu7B0giwky5UGgivXz+VEV6yZIkNmg46yA7ZtXGjnVDh+OPtOp/6VO7/9tnH3t59t7294w4bjG+11fTXOO44W2aw99526LNly6zr9tvb1+jutsNyzSAQXrJkSXmB8JvfbIPTD33IPv6//7NB5Ne/nlun1qURQ0O2Pe+/P/9Y2bDBZm7LPX6ammx2uaPDBsNRTE7arL0fCO+wgw2EC3Xiu+UWO16wX4NdhLiPc1WB8CjY3qe1mrawhvQGr/oU4byTxXknj2b3NKO1XbV6Q4LuUYHwo4/mJ6r8QHj5chtshhkcnMos9/b22sD01ltttnTbbWGnnezP5V/7GrzqVbn/23VXG1z5gfDtt9sSiKhOZVttZTO/X/yiDbBOOsnW6m6/vX3+xhttPDGDQLi3tzcXuPqBbLhG2CdY+7rnnvCWt8BvfpNbFkdGePFiexsVCPslG3//e/6xsmGDzepX0jFv773tBcoll+Sy7UH8Xw1aW+3tjjva9vEn2Pj3v3NZ+cFBW7by6leX9dJxH+eqAuGWBQvsHYUd5ubN5MCuI847WZx38mh2TzNa21WrNyToHqwRBhvUZTL5ozls3GiDzr32is4IDwxMBUvz5s3LbfPzn7clDSedZDOIn/pUfoDW0mJnObv7bptRfewxm0ksxKab2hEY1q+H//f/7DI/EPZHbphBIDxv3rzSNcKF2Gqr/NKCODLCZQbCecfKhg3ll0UE+cIX7P9deOH05/w4LVgaAfY9HR+3GfKTTrLLbr/dXpCUGQjHfZyrCoQn/A+DwvKI4QrmAE8TzjtZnHfyaHZPM1rbVas3xOT+wAOwzTb5pQ1hgjXCkBs5Ilge8eKLdrrerbcuHAh7we/w8HBum7vsYqc7vugiOyZwFPvsYzOId9xhHx9wQHn75uMHvn4gvN12lf1/gOHh4fJKI6KYP9/WO/vlAnFkhJub7XYLlUYA3HILw8Hnqw2EZ82y/+dvN4j/fkYFwjfeaGePu/NOe0Fzyy32oumVryzrZeP+jKoKhBv9g0phINzq/zygDOedLM47eTS7pxmt7arVG2Jyv+8+OzmFX3oQRbg0YpttbBYzHAgvW2ZHC+jvt4GPTzabVxrR2to6PctcjH32sdv71a9stnjffcvePcCWLCxfbgPAWbPsNMBV0traWnr4tEIsWGAzoX5gF0cgDLlJNcIMD9tOh2NjzFq92i4zpvpAGGzpQ9Sv9OHSiBUr7OgRTzxhR/KYO9e2zw9+YAPhPfe0AXxZLxnvZ1RVIJz1i6gVXrFnSsysk1acd7I47+TR7J5mtLarVm+Iyb2/3976ozJEEQ6EGxrsKALBQHjjRtuJbeVK+ziYFfYDRW87mUxmegaxGH6HuSuusIFdNYGjXx6xzTa5STaqIJPJ5EoZgoFwc3OufQrhl3v6FwmDg/Z/ymmDYixZMj0jnM3aJOIRR9jXuP763GsPD5c3q1wUhQLhcGlEQ4PtMPfII/CHP9j66JNOskPf3XZb2WUREP9nVFUgPHWw+1dNipBKZ4dJCc47WZx38mh2TzNa21WrN5Th/qUvwetfX3ydSgLhYMDmjxzhj+/rZ4S33NI+DgbC/ne4F/yKyPRyi2Lstpt97fHxyssifPxAeAb1weC5R9UIlyqLgFwG1A+EBwZmng2G6EDYTyC2t8MrX0nTP/5hH1c6hnCYWbOKZ4SDx8gOO9gAvKPDTizy3/9tg/PR0YoC4bg/o6oCYfGvnvwPqiIaZnDFWU+cd7I47+TR7J5mtLarVm8ow/1Pf7L1mcV63ftBmT8FcRThjDDYQHhgwE4jDPmlERAdCHvbaWhoqKw0wu8wB8U7yhUjpkC4oaHB/uQvkj9qRDmBcDimGRycWUc5n2KB8Jw58IY30HD//fY9mmkgXG5pBNg64UzGLjviCHvM+HXBwZFBShD3Z1TVJ37CL41QmBGe8D/kynDeyeK8k0eze5rR2q5avcFzHx2NnuRgYsJ2hAPw60OjKCcjHJW93XNPe3v//TYQHB62pRHLltn1gkOo+QGjt52JiYnKMsKQK4+oNiPsd5CbYSA8MTFhg+A5c/JLIyoJhJPICAc78L35zfb+NdfULhAOl0ZArsPcYYflAv5vfxvOO88eJ2US92dUVSDc4g+irDAQnlXGINFpxHkni/NOHs3uaUZru2r1Bs/9y1+G17xm+pOPPJILNu+6q/BG/EB47drCY/ZHZYR32w0aG+0sbv6IE8uW2drQLbYomhGeNWtWZRlhgJNPtrPJ7bxzeeuH2XdfWyZw0EHV/b/H1PHS1lZ5IFzL0oi+Ppt99QlmhPfYA7PFFvYXAj8QjrtGOKo0Yvfd7e3b355btt9+dvrsCoj7M6oqEB5uarJ3FJZGDEUNL6IA550szjt5NLunGa3tqtUbPPfnn7cd1cLcc4+9bWuzw1YVwg/KxsdzQVKYqEB41iwblN53X34gDLY8okiN8NDQUGWd5cD+pH7JJdV3dFuxwraTP/RblUwdL3Pn5tcIlxoxAmpXGuGPJRwcOSIYCIsw/oY32Ikw1q61gXO1wWWpjHCwNGKPPeyQd+96V3Wv5RH3Z1RVIDzPv2JRmBGeX+awIGnDeSeL804eze5pRmu7avUGz73Q7Kv33GODrCOPLJ0R9pNOhcojCmVv99prekYYCgfCxsDkpPWutDQiJUwdL9VkhGtZGgH55RGhsY2bjz3WBse//331ZRFQWUYYbAZ4hjW+cX9GVQXCPePjthZHYUa4J6pmSwHOO1mcd/Jodk8zWttVqzd47plMbuSGIPfcY+t499/fZnqfey56I/39dlILKBwIFwpa99zTbvehh+zjTTaxt1tuaV/T/6k+mMwaH7felZZGpISp46WtrfLOcn72Nzh8WpyBcKGMMNCzxx7Wsa8v2UA4BuL+jKoKhJe0t9sDR2FGeIl/YCrDeSeL804eze5pRmu7avUGzz0qIzw5aUsW9tnHZuSgcFa4vx923dUGuaUywlGBMMDf/mZv/UB4xQobnL/wgn0cCoSXLFmiNiM8dbxUkxFubLSBr5/cGxiIb9QIyM8IhwLhJcuX205rEE8g7M+O5xNVGhETcX9GVQXCHR0dsGhRdI/YlNPR0VFvhapw3snivJNHs3ua0dquWr3Bc48KhJ94wgZCe+9tg9XGxsKBcF+frTHdeuvCQ6iVCoRvu81+V/vZwKVL7a0fmPmZU29bHR0dajPCU8dLMBAut0YYbHlEHUojOjo6bJkMVN9RDmyga0zu/fOpYUY47s+oqkC4vb3dfqA6O+utUjHt7e31VqgK550szjt5NLunGa3tqtUbPPeo0gh/uuS997YB2u67R3eYM8ZmJ+fPt8OKVVojvHixrQfOZHLZYH855H6qD2WE29vbaxo41ZKp4yXYWa7cjDDkAuHxcfuXUEa4vb3dzu62aJE9LqrFz/iGyyNq+H7G/RlVFQh3dHSoDYS1Zhmcd7I47+TR7J5mtLarVm8okhG+5x476cNOO9nH++5rM8Jf+AIsXAg/+pFdPjpq/3/+fDvO7pNPTv/JG4qXMfhZ4eC4sOGa1WAg7GeElZZGTMsIG1NZIDx/vg2E/Sx5HBnhefNsh8dSGWE/njr66Opfq1AgXMPSCJcRXrJEZSCsNcvgvJPFeSePZvc0o7VdtXpDkYzwPffYoav80SD23dfOLveVr9ig9N577XK/VtXPCPf3R3/fFiqNgNxwZMFA2M8I+4FZVEZYaWnE1PHid5YbHbXBcCUZ4f7+XJvEEQiLTJ9Uw88Iz56d7z3TWdpcRjhZuru71WaEu4O9NxXhvJPFeSePZvc0o7VdtXqD5z4xMT0j/NBDNhD2Oe44+MxnbAe6nXYCP8Pm16ouWJCbcS2qPKJYIOxnhMstjZiYsN5KM8JTx4ufEfYzr5XWCPsZ4ThKIyA6EG5pmboYiu04r0MgHPdnVFUgvGDBAhsI+/U0iljgjxeoDOedLM47eTS7pxmt7arVGzz3TMZmJIMlDSMj+ZnGBQvgq1+1wXF7ey65FMwI+1MQFwqEm5ps5jGMnxHedNPcstmz7V+BGuEFCxbkgms/a62EqeOlrc22eTAwLge/NCLOjDBMD4RD5RqxHed1KI2I+zOqKhAeHBy0UzVC/uDcChgM9pJVhPNOFuedPJrd04zWdtXqDZ67P1ZvsDxictKOFBFFe3suIxwMhLfe2t5fu3b6/4yPF87crlwJP/yhnf44yOLF+aUR/k/yExPWe3zcZg+jgusUMxjO5Pqz+lVaGhF3Rnjx4unjCAey1LEd56UywjW4sIn7M6oqEJ49ezbsuKN98Nhj9ZWpkNleXY42nHeyOO/k0eyeZrS2q1Zv8Nz9QDhYHlEsEA6WG/qlEfPn2wBn9uzocfsnJgoHwiJw5pm5pJVPMDAbHLSjFQCMj1vvYsF1ipk6XvzA159Vr5JAeGQk1za1ygiHAuHYjvNigXCNLmzi/oyWFQiLyOEi8riIrBGRTxdY5zgReUREHhaRy2K19BgfH88Fwo8/XouXqBnjyko5fJx3sjjv5NHsnma0tqtWb/DcozLC2WzhTlHt7TZgmpzMZYT9n57nzMnVvAYpFggXYsmS/NIIv254YsJ6T0yo6ygHgePFD3z9jHC5NcL+dMEbNtjbuANhv0QmVBoR23FerDSiBmUREP9ntGQgLCKNwAXAEcAuwAkisktone2BzwAHGWN2BT4cq6VHY2OjfXPnzoV162rxEjWjsdDVeMpx3snivJNHs3ua0dquWr3Bcw9nhI2xgXCx0gi/tjVYGgE2cPJHGwhSTdAaLo3wh1QbH7feSjPCU8dLOBCuJCMMuUA4zs5yY2O59y+UEY7tOC+VEa4BcX9Gy8kI7wesMcasNcaMA5cD4UHnTgMuMMb0ABhjNsZqGWbTTXM/PzgcDofD4bCEM8L+bbHSCLDlEeFAOM6MsF8akc3abQYywlO3CjPCU/gBbHBc4XIIB8JxZoQhd/FRyWx3lVAsEK5RRjhuygmElwPB9Ot6b1mQHYAdROTfInK7iBwel2CQSf8Kd9NNc3OWK2EyPJyNEpx3sjjv5NHsnma0tqtWb/DcwxlhPxAuVhoBNoDr64NZs3IBaaGMcDXZW780wu/o5AfC4+PWu4YZxFoydbxUmxH2LzrWr7fvUVz1r+FJTEKlEbEd58VKI2r0fsb9GY2rs1wTsD1wCHAC8BMRWRheSUROF5HVIrJ648aNjI6OMjw8zNDQEGNjY/T395PJZOjp6cEYQ6dXwO/PIjIwMIAxhvFFizAvvEB/fz9jY2MMDQ0xPDzM6OgoAwMDTExM0NvbSzabpcu7GvK34d92d3czOTlJX18f4+PjDA4OMjIywsjICIODg4yPj9PX18fk5OTUmHXhbXR1dZHNZunt7WViYoKBgYGC+zQ8PBy5T52dnRhj6OnpIZPJpG6fxsfHK36f0rBPLS0tVb1P9d4nv83jPPaS2KehoaFEP09x7pPfA7mS98lRmhaFQQ3o9QbPPRwI+7fFSiPABsL+9Mo+cWeEx8Zyv+YGAuGWlha1pREtwYsGqLxGOJgRnjs3vs5l4UlMQhnh2I7zOpRGxP0ZLWdciw1AsPvnCm9ZkPXAHcaYCeApEXkCGxjfFVzJGHMhcCHAqlWrzKxZs/I20uo16CKvN+lS7ycbfxaROXPmICK0rFwJt9zCfO8D2xpIv/vbXLhwIQBLvKsifxv+7WLvIPHHo4tqWH+Zv254G/62/ddqjvgQ+26tra2IyLR98h/7+5y2fWpsbKTS9ykN+9TX11fV+1TvfRr3vhTiPPaS2KdZs2bR2NiY2Ocpzn2aHZppqZJjz1GYkZERlW2m1Rs8d7/UwM8ElwqEw6URwUC4rS1/CC6fagNhgGeesbd+xnJiIuetsN2njpc4aoTjnDEtXBoRygjHdpzXoTQi7s9oORnhu4DtRWRrEWkBjgeuDq3zB2w2GBFZii2ViBh8cGbM9WtwNt3UTg8ZbvgUMzeuAviEcd7J4ryTR7N7mtHarlq9wXMvVBpRKhCuNCNcaSDiB2bhQHh83HorzQhPHS8zzQiPj8fXUQ6ml0aEMsKxHed1KI2I+zNaMhA2xmSAs4DrgEeBK4wxD4vIl0TkKG+164AuEXkE+AfwCWNMV/QWq6fPH+PQn7FGUYe5KXdlOO9kcd7Jo9k9zWhtV63e4LmHO8v5AXGhGuHWVhv8dnbaGuHgrF1x1giHM8KBznJ9fX1qO8tNHS9+cNbVZeusyx3ZIHjhEVdHOShZGhHbcV6H0oi4P6NlTflhjLkGuCa07OzAfQN81PurGf5PlSxbZm9feMHOYqOAKXdlOO9kcd7Jo9k9zWhtV63e4LlXWiMMNivsZ4T9GeUg/hphgKefzn88Pm69lXaWmzpeWlvtxUY2W9noDK2t9m9sLN5AuLXVXsh0ddn3a2IirzQituO8DqURcX9GVc0s53dimcoIKxo5YspdGc47WZx38mh2TzNa21WrN3juhTLCxQJhf5rlqBrhQuMIVzNqBERmhDs6OtSWRkwdLyK5QLPc+mAfPwsfd1mOP2Sd/x4GAvTYjvM6lEbE/RlVFQj7nVg0lka0x1kEnyDOO1mcd/Jodk8zWttVqzd47pUOn2b/MVcaEVUj7M9O5lNNGYM/pXJEjXB7e7va0oi846XaQNhv8zgzwpCbXS4iEI7tOG9qssdWgqURcX9GVQXCU1cBm2xib11GuOY472Rx3smj2b0QInK4iDwuImtE5NMRz68UkX+IyL0i8oCIvCluB63tqtUbQhnhaksjwjXCxkQHOZVmb2fPtn/r19vHL7WMMMw8I1yLQLi7O1feEvCK9Tj3SzuC1LA0wmWEwTbuokWqAmGtWQbnnSzOO3k0u0chIo3ABcARwC7ACSKyS2i1z2M7Pu+FHQnoB3F7aG1Xrd4A7UuXTs8El1sa8dxzdt1wRhim1wlXUxoBNjDzfebPt+UEL6WMsF/aUOkMbrUsjah1RhiiA+Ealka8rDPC/mD+gLrZ5fLcFeG8k8V5J49m9wLsB6wxxqw1xowDlwNHh9YxgB/xLACei1tCa7tq9QboCpYLVloa4a8XrhGG6XXC1QbCfhZ47lzr09ICExO2zZV2lss7XtJaGuFfyAQC4ViP80IZ4Rq9n3F/RlUFwv4g+YD9IP3+9/Dss/UTqoA8d0U472Rx3smj2b0Ay4F1gcfrvWVBvgicJCLrsSMC/U/UhmYyG+iiRYtSMctk8Lac2QsbGxtTMctkNfs0NzD50cjQkN0nL4idhMKztgZ+wp6cO3dqn0a94Hmsuztvn8zEBGNe3XAl+5TxMp/ZtjYmJycxTU15UyyPesF72mbOLLZPzc3NU++T8QPNtraKjr0JL3AebWqKdZ/M4sWY4LTWAS9jTGzHXra5mezISN4+ZcfGmGxqqsn7lPUu2ir9PBWirOHT0kJ/f//UbFA8/LC9/dWv4DOfqZtTueS5K8J5J4vzTh7N7jPgBOASY8w3ReRA4BcispsxJhtcaSazgfb29qZilsngbTmzF46MjNDU1FT3WSar2afedevwLWb7s5012a/5xpaWgvs0b5ttpl6vcdGiqX3yO7S1Tk7S6mUrFy5cCOPjtHo/41e0T17/nob5822pRmsrTEzYdSYmmOW9btpmziy2T2NjY7nZQAOTa1R07HnPzWpvhziPvSVLbKbf//V8zpypbTU1NcU2GyizZ8PEBPOCGe3xcZg9e8oxzvfJb7u4ZgNVlRFuC/7ccI03rLGS2eXaKv2pJCU472Rx3smj2b0AG4AtAo9XeMuCnApcAWCMuQ2YBSyNU0Jru2r1BmgLdk7ySx3KLY3wqWWNsF8a4QdMLS0wPm7bXGlnubzjxb9fbY1wLUojANZ5PxAFXGM9zhMujYj7M6oqEB4dHc09OPhge3X5/PP1E6qAPHdFOO9kcd7Jo9m9AHcB24vI1iLSgu0Md3VonWeB1wOIyM7YQDjWrtha21WrN8BYMGCtdNQInyRqhP2Ar7nZlkSMjqqtEc47XsLTLZeL3+a16CwHuUA4EKDHepwnPGpE3J9RVYHwtJ9HNtvM9nRVQNRPOxpw3snivJNHs3sUxpgMcBZwHfAodnSIh0XkSyJylLfax4DTROR+4NfAKd4MobGhtV21ekOo1rGSQDiYEQ4On1YsI1xN0OpnKIMZ4YkJ2+ZKR43IO17SOHwaRAbCsR7n4UA4m63p+xn3Z1RVjbBfID2FokB4mrsSnHeyOO/k0exeCGPMNdhOcMFlZwfuPwIcVEsHre2q1RvATEzkHlRSGjFv3lSZQj0ywtlsVm1pRN7xUm0g7PdRSLA0ItbjPBwI+8dhjQLhuD+jqjLC0xIW228Pjz+e+6CnmJiTLYnhvJPFeSePZvc0o7VdtXpDKBCuJCMskiuPCAZjhTLC1QatweHTYCojbDIZ+z2uMCOcd7xUWyN8xBFw3nmw556xeQHTSyMCnV1jPc5nzcoPhMfH7W2NSiPi/oyqCoSbmkIJ7N12sx9Qf8rGFDPNXQnOO1mcd/Jodk8zWttVqzeEfuKtZEINsOURs2blB6NRGeHJSTvbXLUTasC0jHCTH9gozAjnHS/V1gjPnQuf/GTp96hS/KEhe3rsyA6BXwViPc7DGWH/fo0ubOL+jKoKhMfCxdg772xvn3gieZkKmeauBOedLM47eTS7pxmt7arVG2A8qrNcOaURYAPhYH0wRGeEZ/Kzd9SoERMTjA0MVL/NOpN3vFRbGlErmppyZRchp1iP83Ag7GeEa/R+xv0ZVRUIzwn/3OBfXfb0JC9TIdPcleC8k8V5J49m9zSjtV21egPMCmbKKs0Ib7cdrFyZv6y52f4FM8J+IBxjRniOvy2FgXDe8ZK2QBhyFx+h4zrW47xQRrhGpRFxf0ZVBcID/lWjj3/12teXvEyFTHNXgvNOFuedPJrd04zWdtXqDTDc3597UEmNMMD/+39w7bXTl8+Zk58R9rN91QTCm24KX/86HHecfexlhAe9mcs0lkbkHS9+aUSaLqb8i4+QU6zHecIZ4bg/o6qKoabN/qQoENY6c5XzThbnnTya3dOM1nbV6g0wb/bs3INwIFyqNKKtLTqT2dYWX0ZYBD7xidxjLyO8wA/SFGaE846X17zG1voeeGDdfKbhZ4RD722sx3nCgXDcn1FVGWF/HvAp2trsVa6CQHiauxKcd7I47+TR7J5mtLarVm+AvqB7ePi0ajtihTPCMwmEw3gZ4Z4XX4xvmwmTd7y0tdnRH0JTkdeVAhnhWI/zhEsj4v6MqgqEly4NzQAqYsc8VBAIT3NXgvNOFuedPJrd04zWdtXqDbAwODNZpaURhSiUEY4j2+dlhBcHh1NTRuqPFz8QDmWEY/VubYXgbG81zgjH3eaqAuGOjogZQBcuVBEIR7orwHkni/NOHs3uaUZru2r1Bujt7Mw9qLSzXCHirBEO403i0e1nhBUGwqk/Xgp0lovVu7XVHmf+sVbjQDjuNlcVCLcHp4H0WbAAensTd6mUSHcFOO9kcd7Jo9k9zWhtV63eUCAjXO7waYWIs0Y4jFcaMZURVlgakfrjpUBpRKzefgmEXxJR49KIuNtcVSDcGbza9Vm2DNavT16mQiLdFeC8k8V5J49m9zSjtV21egP0Bd3jKo2oZY2wVxrR62f4FGaEU3+8FCiNiNU7HAjXOCMcd5urCoSX+G9okL33hoceyq9PSSGR7gpw3snivJNHs3ua0dquWr0B5gezfnGVRtSyRtjLCC/wR7tQmBFO/fFSoDQiVu+EA+G421xVINwbVQKxzz6QycAjjyTuUwmR7gpw3snivJNHs3ua0dquWr0BhoL9ZeIqjahljbCXEZ4aR1hhRjj1x0uB0ohYvRMujYi7zVUFwvP82WiCrFhhb59/PlmZCol0V4DzThbnnTya3dOM1nbV6g0wOxic1jojHGONsOaZ5VJ/vBQYRzhW74QzwnG3uapAeDj4YfRZtszebtyYrEyFRLorwHkni/NOHs3uaUZru2r1BhgLuiuqER7zZwpTWBqR+uNl003toAJbb523OFbvhAPhuNtc1cxyrVFp9k02sbf+8CspJdJdAc47WZx38mh2TzNa21WrN0BeGBmeUGMmo0ZMTNi/5ub4a4SzWZr9YF1hRjj1x0tbGzz3HARnHSRm74RLI+Juc1UZ4UwmM33hnDl2fu+UB8KR7gpw3snivJNHs3ua0dquWr0Bsn4mDuLNCEOuPCLujDCQVZwRVnG8zJljJyALEKt3whnhuNtcVSAsoTdyik02gRdeSFamQgq6pxznnSzOO3k0u6cZre2q1RtA/KAX4p1ZDnKBcNwTagDib1thRljr8RKrd6FAuEYZ4bjbXFUg3FDop50tt4Rnn01WpkIKuqcc550szjt5NLunGa3tqtUbQoFwXKURfkbYrxOuQUZYRkbsY4WBsNbjJVbvQqURNcrwx93mqt7BCf8DGGabbWDt2mRlKqSge8px3snivJNHs3ua0dquWr0BJoPj6dcqIxx3jTC6SyO0Hi+xekdlhJuaqr/4KkHcba4qEJ41a1b0E9tsY0sjUtx7s6B7ynHeyeK8k0eze5rR2q5avQGagz8ZxzV8WgIZ4SY/gFKYEdZ6vMTqHRUI17ATYdxtrioQHgoO4RJk5Up7m+Kplgu6pxznnSzOO3k0u6cZre2q1RtgvNjwaTMZNQJqWiOc8SdIUJgR1nq8xOodVRpRw4uauNtcVSA8f/786CeWLrW3XV3JyVRIQfeU47yTxXknj2b3NKO1XbV6A7Q2BUZEDdcIp3HUCC9YaqnxKAO1ROvxEqt3VEa4hu9l3G2uKhDu6emJfsKfQrCzMzmZCinonnKcd7I47+TR7J5mtLarVm+AUb/WFuKvEa5hacREb6/NWFfrWEe0Hi+xeidcGhF3m6sKhJf4Ae/0J+xtijPCBd1TjvNOFuedPJrd04zWdtXqDTAnmIWLqzSiUEY4xs5yLf5kHQrRerzE6p1waUTcba4qEO7o6Ih+QkFpREH3lOO8k8V5J49m9zSjtV21egMM9/fnsqpxlUaEM8J+GUNTDBPT+hnhvj6VZRGg93iJ1Tvh0oi421xVINze3h79xLx59kOZ4kC4oHvKcd7J4ryTR7N7mtHarlq9wcsI+wFILWeWa2qaNlNZVXiuzWNjajPCWo+XWL39Yy6h0oi421xVIFzwKkAE2ttTPc2yu2pMFuedLFq9Qbd7mtHarlq9wcsI+0FJXMOnzZplv2ODNcJxBa3ediaD3srQerzE6i1i37+ESiNcRrgQK1akevg0d9WYLM47WbR6g273NKO1XbV6A8xpbrbZ2sbGXAA805nlRGxWOJgRjivI8bbTODqqNhDWerzE7t3amlhpxMs6I9zd3V34yZUrUz3NclH3FOO8k8V5J49m9zSjtV21egOMDg3lZvQKZ4RnMsvXnDk1zQiboSG1pRFaj5fYvcOBcA1LI+J2L+uTISKHi8jjIrJGRD4d8fwpItIhIvd5f++L1dJjwYIFhZ/cYgt48kkwphYvPWOKuqcY550szjt5NLunGa3tqtUboKWhwQaUwYzw5OTMhyVra8ufUCOuoNXLGsrQkNqMsNbjJXbvYCBc49KIuN1LBsIi0ghcABwB7AKcICK7RKz6G2PMnt7fRbFaegwODhZ+co897JXqhRfW4qVnTFH3FOO8k8V5J49m9zSjtV21egNkRkZyGeFgacRMssFQ84zwtPuK0Hq8xO6dYGlE3O7lfDr2A9YYY9YaY8aBy4GjY7Uok9mzZxd+8uSTYfZseOCB5IQqoKh7inHeyeK8k0eze5rR2q5avQEaIVcjHCyNiDMjXIMa4Wn3FaH1eIndO8HSiLjdywmElwPrAo/Xe8vCHCsiD4jIlSKyRdSGROR0EVktIqs3btzI6Ogow8PDDA0NMTY2Rn9/P5lMhp6eHowxdHozxfk9BF988UWMMfT09JDJZOjv72dsbIyhoSGGR0fJbrklExs2MDExQW9vL9lsli5vSDV/G/5td3c3k5OT9PX1MT4+zuDgICMjI4yMjDA4OMj4+Dh9fX1MTk5O1aOEt9HV1UU2m6W3t5eJiQkGBgYK7lNHR0fkPnV2dhbep+FhRkdHGRgYqNs+9fT0VPw+pWGfxsfHq3qf6r1Pvb29sR97SexTR0dHop+nOPdp48aNFb9PjtKM++PNKkOrN0B2fHx6RjiOQDiJjLDSQFjr8RK7d4KlEXG7iylRUysibwcON8a8z3v8bmB/Y8xZgXWWAIPGmDEROQN4pzHmdcW2u2rVKrN69eqKZEdGRopfCRxyiL0KvvnmirabBCXdU4rzThbnnTzVuIvI3caYVTVSSiWVnrO1HhNavQEmjzmGxiefhOeegxNPhO99Dz76UbjoIujvr37Db34zbNwId90FxxwDTz0F998/c+GODthkE3v/4IPhpptmvs2E0Xq8xO59wAGwYAFcdx0sXw5HHGGPuxpQrXuh83Y5GeENQDDDu8JbNoUxpssY410KcBGwT8WGcbBsmf2wOhwOh8PxciOTmT58WhwZ4blzYWDA3o8zI/wSKI1weCRYGhE35QTCdwHbi8jWItICHA9cHVxBRDYLPDwKeDQ+xRyT/ge7EJtsktpJNUq6pxTnnSzOO3k0u6cZre2q1RvA+LO+xV0asXgx+ENWxVkj/BLoLKf1eIndO8HSiLjdS04WbozJiMhZwHXYWvyLjTEPi8iXgNXGmKuBD4rIUUAG6AZOidXSo6VUwy5bBr29Ne+xWA0l3VOK804W5508mt3TjNZ21eoN0DA5Ob2zXByjRixZYgNhY1xGOITW4yV271mzwOuzUesYLG73koEwgDHmGuCa0LKzA/c/A3wmVrMIRkZGijeAX2u0caOdaS5FlHRPKc47WZx38mh2TzNa21WrN9jOcg3NzfFnhJcssdvp67NBTly1pUEvpW2u9XiJ3dvPCBtT89KIuN1VzSw3d+7c4isEA+GUUdI9pTjvZHHeyaPZPc1obVet3gCNxtRm+LTFi+1tV1e8GWGRXACstDRC6/ESu7cfCGcyNhiu4cVB3O6qAuG+vr7iKyxbZm9TWCdc0j2lOO9kcd7Jo9k9zWhtV63eAJmxsega4ThKIyAXCMcZ5PgBsMKsKug9XmL39gNhf2izGr6fcburCoQX+1elhUhxRrike0px3snivJNHs3ua0dquWr0BmiG6RjiO0giIPyMM6jPCWo+X2L39QNjvMFfD0oi43VUFwv5A9wXZbDP7U8vTTyfiUwkl3VOK804W5508mt3TjNZ21eoNMDE6Wpvh0/xAuLvbZvziDFqVZ4S1Hi+xe7e2wuhoIhnhuN1VBcLt7e3FV5gzB7bdFh58MBmhCijpnlKcd7I47+TR7J5mtLarVm8IZIRrXRpRi4yw0kBY6/ESu3eCpRFxu6sKhMu6CnjFK+CBB2ovUyHuqjFZnHeyaPUG3e5pRmu7avWGQI1w3KURCxfaX1trEQj721JaGqH1eKlJRnh8HM49N/e4RriMcCm23BL+8x+49dbaC1WAu2pMFuedLFq9Qbd7mtHarlq9AZqy2dpMqNHYaIPhWnSWcxnhuhC796tfDVtvDRdfbB9vsUXx9WfAyzoj3NXVVXolv4EOOqi2MhVSlnsKcd7J4ryTR7N7mtHarlq9ASbHx6OHT5tpaQTY8giXEZ6G1uMldu9DD4W1a22dcF8fHHxwvNsPELe7qkB40aJFpVdK6dVZWe4pxHkni/NOHs3uaUZru2r1BmjIZm1AGcwIx1EaAblAOO7OcsozwlqPl5p5NzbC/Pm12bZH3O6qAuH+/v7SK6U0EC7LPYU472Rx3smj2T3NaG1Xrd4AZmKiNhNqQG6aZddZLg+tx4tWb4jfXVUg3NbWVs5KtRepgrLcU4jzThbnnTya3dOM1nbV6g0gk5O1GT4N8ksjajGhhtLSCK3Hi1ZviN9dVSA8OjpaeqWVK3P3/SviFFCWewpx3snivJNHs3shRORwEXlcRNaIyKcLrHOciDwiIg+LyGVxO2htV63egJ3eNtxZLpuNp0Z48WI7WZUxLiMcQOvxotUb4ndXFQg3l/Ph22EH+MAH7P2RkdoKVUBZ7inEeSeL804eze5RiEgjcAFwBLALcIKI7BJaZ3vgM8BBxphdgQ/H7aG1XbV6A7lAuFalEcPD9r7rLDeF1uNFqzfE764qEM6Wm+HdeWd7OzRUO5kKKds9ZTjvZHHeyaPZvQD7AWuMMWuNMePA5cDRoXVOAy4wxvQAGGNin5dea7tq9QaiM8JxBsI+LiM8hdbjRas3xO+uKhA2xpS3ol8/4l+9poCy3VOG804W5508mt0LsBxYF3i83lsWZAdgBxH5t4jcLiKHR21IRE4XkdUisnrjxo2Mjo4yPDzM0NAQY2Nj9Pf3k8lk6OnpwRhDZ2cnYAe89x8bY+jp6SGTydDf38/Y2BhDQ0MMDw8zOjrKwMAAExMT9Pb2ks1mp4ZG8gfN92+7u7uZnJykr6+P8fFxBgcHGRkZYWRkhMHBQcbHx+nr62NycpLu7u7IbXR1dZHNZunt7WViYoKBgYFp+zQwMFBwn4BU7xMTE4xls0yKMJnJMDQ0RDaTIWPMjPdpZM6cqeMi29wc3z4Fpliu5H0qduyl/X1Kwz719PSo3aeenp6q3qdCSL2+BFatWmVWr15d0f+MjY3RWs5sJVdcAe98Jzz0EOy6a5WG8VK2e8pw3snivJOnGncRudsYs6pGSjNCRN4OHG6MeZ/3+N3A/saYswLr/BmYAI4DVgA3A7sbY3oLbbfSc7bWY0KrN8bYTPDZZ8Ntt8HAgL191atg1iy4/vqZbf/66+ENb7D3f/hDOPPMmTsDnHgi/PrXcNVVcMwx8WwzQbQeL1q9oXr3QudtVRnhsbGx8lb0M8K/+Y09OaSAst1ThvNOFuedPJrdC7ABCE7rtMJbFmQ9cLUxZsIY8xTwBLB9nBJa21Wr91QpRHNz7WqEfWpRI6y0NELr8aLVG+J3VxUIzwn8NFMUPxD+8pfhL3+pnVAFlO2eMpx3sjjv5NHsXoC7gO1FZGsRaQGOB64OrfMH4BAAEVmKLZVYG6eE1nbV6k0mY2+jhk+La9QIn1rUCCvtvKX1eNHqDfG7qwqEBwYGyltx4cLc/ZQMGl22e8pw3snivJNHs3sUxpgMcBZwHfAocIUx5mER+ZKIHOWtdh3QJSKPAP8APmGMiXXeUq3tqtU7LxCu1cxyPrUYR1hpRljr8aLVG+J3b4p1azVmYTDALUZwLOG5c2viUillu6cM550szjt5NLsXwhhzDXBNaNnZgfsG+Kj3VxO0tqtW72kZ4bhLI9rabLDqpljOQ+vxotUb4ndXlRH2ez+WJDgPdUrqYMp2TxnOO1mcd/Jodk8zWttVq3fBjHBcpREiuaywG0d4Cq3Hi1ZviN9dVSC8dOnS8lYUyd1PyVjCZbunDOedLM47eTS7pxmt7arVu2BGOK7SCKhNIKw8I6z1eNHqDfG7qwqE/bHiysKfXS4lYwlX5J4inHeyOO/k0eyeZrS2q1bvop3l4gqE/Q5zrrPcFFqPF63eEL+7qkC4vb29/JX/7//sbUoC4YrcU4TzThbnnTya3dOM1nbV6s3EhL2tVWkE5DLCrrPcFFqPF63eEL+7qkDYn5GkLPzhNVISCFfkniKcd7I47+TR7J5mtLarVu+pjHB4HGFXGlFTtB4vWr0hfndVgfCS4PAtpWhshNbW1ATCFbmnCOedLM47eTS7pxmt7arVu2hnuTQHwso7y2k9XrR6Q/zuqgLh3t7eyv5hzpzUdJar2D0lOO9kcd7Jo9k9zWhtV63eRYdPi7s0Is6g9fWvZ+zEE0HpT/Vajxet3hC/u6pAeN68eZX9Q1tbajLCFbunBOedLM47eTS7pxmt7arVu+YTakBtAuHddqPx5z+PzzFhtB4vWr0hfndVgfBwpUFtijLCFbunBOedLM47eTS7pxmt7arVu+YTagC86U3wwQ/CDjvEsz0PtW2OXnet3hC/u6qZ5VpbWyv7h/nzUzPFcsXuKcF5J4vzTh7N7mlGa7tq9S46fFpcpRGbbgrf+U482wqgts3R667VG+J3V5URzvgf9HJZvBi6u2sjUyEVu6cE550szjt5NLunGa3tqtU7kdKIGqG2zdHrrtUb4ndXFQhLcMa4ckhRIFyxe0pw3snivJNHs3ua0dquWr3zxhGuVWlEjVDb5uh11+oN8burCoQbKv15Z9Ei6OmpjUyFVOyeEpx3sjjv5NHsnma0tqtW70SGT6sRatscve5avSF+d1UtMeFf8ZaLnxH2r4zrSMXuKcF5J4vzTh7N7mlGa7tq9S44oUacNcI1Qm2bo9ddqzfE757uT0eIWbNmVfYPc+fak8GCBXD33bWRKpOK3VOC804W5508mt3TjNZ21eqtuUZYbZuj112rN8TvrioQHqp0KLRNNrG3g4OwahU89hjceWf8YmVQsXtKcN7J4ryTR7N7mtHarlq9Exk+rUaobXP0umv1hvjdVQXC8+fPr+wf3v3u/Mc77wz77x+fUAVU7J4SnHeyOO/k0eyeZrS2q1bvRIZPqxFq2xy97lq9IX73dH86QvRU2vGtuRlWrKiNTIVU7J4SnHeyOO/k0eyeZrS2q1bvaaUR2SwYo6I0Qm2bo9ddqzfE764qEF7iT++oEK3uzjtZnHfyaHZPM1rbVav3tIww5LLCKQ+E1bY5et21ekP87qoC4Y6Ojsr/yZj4RaqgKvcU4LyTxXknj2b3NKO1XbV6T8sIQ25s4ZSXRqhtc/S6a/WG+N3L+nSIyOEi8riIrBGRTxdZ71gRMSKyKj7FHO3t7bXYbCJodXfeyeK8k0eze5rR2q5avadNqBFclvKMsNo2R6+7Vm+I371kICwijcAFwBHALsAJIrJLxHrzgA8Bd8RqGKCqq4A5c+IXqQKtV1/OO1mcd/Jodk8zWttVq3feOMLhjHDKA2G1bY5ed63eUJ+M8H7AGmPMWmPMOHA5cHTEel8GzgNGY/TLo6qrgKuvhu23j1+mQrRefTnvZHHeyaPZPc1obVet3pE1wuPj9jblpRFq2xy97lq9oQ4ZYWA5sC7weL23bAoR2RvYwhjzl2IbEpHTRWS1iKzeuHEjo6OjDA8PMzQ0xNjYGP39/WQyGXp6ejDG0NnZCeSi/7Vr12KMoaenh0wmQ39/P2NjYwwNDTE8PMzo6CgDAwNMTEzQ29tLNpulq70dvvOdaS7d3d1MTk7S19fH+Pg4g4ODjIyMMDIywuDgIOPj4/T19TE5OUl3d3eeh3/b1dVFNpult7eXiYkJBgYGCu7TM888E7lPnZ2dle9TV1ekTy32af369RW/T2nYp+7u7qrep3rv0/r162M/9pLYp6effjrRz1Oc+/TUU09V/D45SuO/z9rQ6h0ZCCvJCKttc/S6a/WG+N3FlOhMJiJvBw43xrzPe/xuYH9jzFne4wbgRuAUY8zTInIT8HFjzOpi2121apVZvbroKtOYnJyksZoP9M03w8EH5x5nsyBS+XZmQNXudcZ5J4vzTp5q3EXkbmNMTfpCpJVKz9lajwmt3px3Hnz60zA8DBdeCB/+MKxZA9ttZ5NBH/xgvQ0LorbN0euu1Ruqdy903i4nI7wB2CLweIW3zGcesBtwk4g8DRwAXF2LDnODg4PV/WNbW/5j/8o5Qap2rzPOO1mcd/Jodk8zWttVq7fm0gi1bY5ed63eEL97OZ+Ou4DtRWRrEWkBjgeu9p80xvQZY5YaY7YyxmwF3A4cVSojXA2zZ8+u7h/DHeb8n4sSpGr3OuO8k8V5J49m9zSjtV21ek8Fwo2N6jrLqW1z9Lpr9Yb43UsGwsaYDHAWcB3wKHCFMeZhEfmSiBwVq00Jxv2r20oJZ4Sr3c4MqNq9zjjvZHHeyaPZPc1obVet3mQymIYGGwQrqxFW2+boddfqDfG7N5WzkjHmGuCa0LKzC6x7yMy1oqm6niU8L3UdMsJaa3Gcd7I47+TR7J5mtLarVm8mJmxZBKibUENtm6PXXas3xO+e7k9HXCxcCOefD1t4pc51CIQdDofD4agZmUwuEA7XCCsOehyOWlNWRjgtTPrzplfDhz5kM8P/9V91KY2YkXsdcd7J4ryTR7N7mtHarlq9yWTsZBqgrjRCbZuj112rN8Tvrioj3NLSMrMN+CeJOmSEZ+xeJ5x3sjjv5NHsnma0tqtW77yMsLLOcmrbHL3uWr0hfndVgfCMB7KvYyCsdRB+550szjt5NLunGa3tqtWbTAbjB7zKhk9T2+boddfqDfG7p/vTEWLu3Lkz24B/FVGH0ogZu9cJ550szjt5NLunGa3tqtWbTAbxkz3KMsJq2xy97lq9IX53VYFwX1/fzDZQx4zwjN3rhPNOFuedPJrd04zWdtXqTSZD1g+AldUIq21z9Lpr9Yb43VUFwosXL57ZBuoYCM/YvU4472Rx3smj2T3NaG1Xrd5kMjT6v3oqGz5NbZuj112rN8Tvnu5PR4iOjo6ZbcA/SRx0EGzYUHzdmJmxe51w3snivJNHs3ua0dquWr3JZMiI2PvKhk9T2+boddfqDfG7qwqE29vbZ7YBPyMM8ItfzGxbFTJj9zrhvJPFeSePZvc0o7VdtXozMUFTa6u9r6w0Qm2bo9ddqzfE764qEJ7xVcCsWbn7AwMz21aFaL36ct7J4ryTR7N7mtHaruq8fd9Mhgk/I6ysNEJdmwfQ6q7VG1xGeGYb2Gyz3P2vfhV6e2e2vQrQevXlvJPFeSePZvc0o7VdVXk/9BAsWwZ33QWZDM1+ssdlhBNDq7tWb3iZZ4S7urpmtoFly/IfP/LIzLZXATN2rxPOO1mcd/Jodk8zWttVlffzz4MxcPvtNiPsL1c2fJqqNg+h1V2rN8TvrioQXrRo0cw20BSaUXrdupltrwJm7F4nnHeyOO/k0eyeZrS2qyrvsTF7+9BDkMnQFM4IK5lQQ1Wbh9DqrtUb4ndP96cjRH9/f7wbfPbZeLdXhNjdE8J5J4vzTh7N7mlGa7uq8vYDXS8QzvjLlZVGqGrzEFrdtXpD/O6qAuG2traZb+Svf7V/8+cnmhGOxb0OOO9kcd7Jo9k9zWhtV1XewUB4YoJGf9QIZaURqto8hFZ3rd4Qv7uqQHh0dHTmGznsMPu3aBEkOLNKLO51wHkni/NOHs3uaUZru6ry9gPh/n546imyhcYRTnlphKo2D6HVXas3xO+e7k9HiObgOMAzpa0Nhofj214JYnVPEOedLM47eTS7pxmt7arK2w90AV54ASk0s1zKM8Kq2jyEVnet3hC/u6pAOJvNxrexOXNgaCi+7ZUgVvcEcd7J4ryTR7N7mtHarqq8g4EwYPyAV1mNsKo2D6HVXas3xO+uKhA2xsS3sba2RAPhWN0TxHkni/NOHs3uaUZru6ry9gPhuXPtrT8ykrIJNVS1eQit7lq9IX73dH86QjSFhz+bCVGlEevWwZln5k4eMRKre4I472Rx3smj2T3NaG1XVd5+ILzXXgCI/5NxuEY45RlhVW0eQqu7Vm+I311VIDzmj5kYB1GlEaefDj/+MfzjH/G9jkes7gnivJPFeSePZvc0o7VdVXn7ge4++wAw6Wd+lZVGqGrzEFrdtXpD/O6qAuE5c+bEt7GojHAmE71uDMTqniDOO1mcd/Jodi+EiBwuIo+LyBoR+XSR9Y4VESMiq+J20NquqrzHx0EE9tgDgKZCw6elvDRCVZuH0Oqu1Rvid0/3pyPEwMBAfBuLygj7dSf+EDQxEqt7gjjvZHHeyaPZPQoRaQQuAI4AdgFOEJFdItabB3wIuKMWHlrbVZX3+Di0tMDuuwMw4X+HKSuNUNXmIbS6a/WG+N1VBcILFy6Mb2NtbdDZCZ/8ZG5ZDQPhWN0TxHkni/NOHs3uBdgPWGOMWWuMGQcuB46OWO/LwHlATQYU1dquqrzHxmwgvPPOIEKLnylTNnyaqjYPodVdqzfE764qEO7q6opvY36w+41vwPPP2/s1DIRjdU8Q550szjt5NLsXYDkQnDZzvbdsChHZG9jCGPOXYhsSkdNFZLWIrN64cSOjo6MMDw8zNDTE2NgY/f39ZDIZenp6MMbQ2dkJQEdHB11dXXR2dmKMoaenh0wmQ39/P2NjYwwNDTE8PMzo6CgDAwNMTEzQ29tLNpudej86Ojrybru7u5mcnKSvr4/x8XEGBwcZGRlhZGSEwcFBxsfH6evrY3Jyku7u7shtdHV1kc1m6e3tZWJigoGBgWn79OyzzxbcJyBd+zQ+TralheysWYx++MP0vOY1DAwMMOaV+U16Ew8MDA+nep+efPLJit+nYsdekvu0fv362I69JPfpqaeeSuTzVIt9euqpp6o69goh9RpCY9WqVWb16tV1eW0A3vEOuPJKe//qq+HII+G1r4WbbrJTMB92WP3cHA5HqhGRu40xsdfVxoGIvB043BjzPu/xu4H9jTFneY8bgBuBU4wxT4vITcDHjTFFT8h1P2c7pnPaaXDNNbBhQ/7ytWth223hNa+Bm2+GZ56BlSvr4+hwpIRC521VGWE/6o+FL30JTj3V3n/sMXvrD9Jcg96UsboniPNOFuedPJrdC7AB2CLweIW3zGcesBtwk4g8DRwAXB13hzmt7arK268R9phyV1YjrKrNQ2h11+oN8burCoTb29vj29jOO8OFF9r7fsrcz46HZuuJg1jdE8R5J4vzTh7N7gW4C9heRLYWkRbgeOBq/0ljTJ8xZqkxZitjzFbA7cBRpTLClaK1XVV5hwLhKXdlw6epavMQWt21ekP87qoCYb+2JDYaGuyMPAMD8Lvf5QLgGmSEY3dPCOedLM47eTS7R2GMyQBnAdcBjwJXGGMeFpEvichRSXlobVdV3qFAeMpd2fBpqto8hFZ3rd4Qv7uqqUWWLFkS/0bnzoXvfAe+/e3cshpkhGvingDOO1mcd/Jodi+EMeYa4JrQsrMLrHtILRy0tqsq71AgPOWuLCOsqs1DaHXX6g3xu6f7MjFEb29v/BttacnVBvt4PSTjpCbuCeC8k8V5J49m9zSjtV1VeYcC4Sl3ZcOnqWrzEFrdtXpD/O6qAuF58+bFv9Fwb1uAj38c+vtjfZmauCeA804W5508mt3TjNZ2VeUdCoSn3MOd5VJeGqGqzUNoddfqDfG7p/vTEWI4PCVyHExORi+PeeaSmrgngPNOFuedPJrd04zWdlXlHQqEp9yVZYRVtXkIre5avSF+d1WBcKs/j3oSrFgBP/lJbJtL1D1GnHeyOO/k0eyeZrS2qypvf2Y5jyl3ZcOnqWrzEFrdtXpD/O6qAuGMN1tOYlx6aWybStw9Jpx3sjjv5NHsnma0tqsq7/FxCAQFU+7hznIpL41Q1eYhtLpr9Yb43dP96QghNZj6eAp/jvYge+wR2+Zr6l5DnHeyOO/k0eyeZrS2qyrvUGnElLuy0ghVbR5Cq7tWb4jfXVUg3FCLq9qbb4bzz48OhKOWVUlN3BPAeSeL804eze5pRmu7qvIOBcJT7soywqraPIRWd63eEL+7qpaY8D/UcfLqV8OHPpSbXS7I6CjceSeIwH/+M6OXqYl7AjjvZHHeyaPZPc1obVdV3qFAeCIc+GYy9vsr5dk/VW0eQqu7Vm+I311VIDxr1qzabXx0NHrZRRfZ+zfcMKPN19S9hjjvZHHeyaPZPc1obVdV3qFAeMo9mDFLeVkEKGvzEFrdtXpD/O6qAuGhoaHav8gvf5m7PzqaG094/vwZbTYR9xrgvJPFeSePZvc0o7VdVXmHAuEp92AWWEEgrKrNQ2h11+oN8buXFQiLyOEi8riIrBGRT0c8f6aIPCgi94nIv0Rkl1gtPebPMBgti733zt0fHc2NJ9w0s9moE3GvAc47WZx38mh2TzNa21WVdygQznP3A2AFtaCq2jyEVnet3hC/e8lPiIg0AhcARwC7ACdEBLqXGWN2N8bsCXwd+Faslh49PT212KzlgQfg/vshmHJ/9FG45hp7f4YDONfUvYY472Rx3smj2T3NaG1XVd6hQDjP3Q+EFWSEVbV5CK3uWr0hfvdy0pz7AWuMMWsBRORy4GjgEX8FY0xwPuI2wMQp6bNkyZJabNay++729vnnc8seeih3f4ap+Jq61xDnnSzOO3k0u6cZre2qxnty0v4FAuE89/AIEilGTZtHoNVdqzfE717ObybLgXWBx+u9ZXmIyAdE5ElsRviDURsSkdNFZLWIrN64cSOjo6MMDw8zNDTE2NgY/f39ZDIZenp6MMbQ2dkJQEdHBwBr1qzBGENPTw+ZTIb+/n7GxsYYGhpieHiY0dFRBgYGmJiYoLe3l2w2S1dXV942/Nvu7m4mJyfp6+tjfHycwcFBRkZGGDEFYvjh4dw2NmwAY+jq6iKbzdLb28vExAQDAwMF92nt2rWR+9TZ2Vn7fRoZYXBwkPHxcfr6+picnKS7uztyG+F9euaZZyp+n9KwT/5f1D4Ve5/qvU/PPvtsVe9Tvfdp7dq1sR97Se3Tk08+WfH75CiN347aUOPt95wPBMJ57opKI9S0eQRa3bV6Q/zuYgoFfv4KIm8HDjfGvM97/G5gf2PMWQXWPxE4zBjznmLbXbVqlVm9enV11rVkeBja2nKP994b7rkH/vd/4YtfhHXrYOVKO/3y+95XN02Hw1E/RORuY8yqenskSWrP2S9X+vpg4UL41rfgIx+Z/vyCBbaz99KloDjocTjiotB5u5xLxQ3AFoHHK7xlhbgcOKYiuzJJ5AomPIf1woW2btivEb7/fnt72ml2nvcy0Xr15byTxXknj2b3NKO1XdV4j4/b21IZYQWlEWraPAKt7lq9IX73cgLhu4DtRWRrEWkBjgeuDq4gItsHHr4ZmNnsEwVob2+vxWbzCZ805s+3GWK/RtgfRQJshrhM2mfNgv/5nxl3ukuaRNq8BjjvZNHqDbrd04zWdlXjHREI57krqhFW0+YRaHXX6g3xu5cMhI0xGeAs4DrgUeAKY8zDIvIlETnKW+0sEXlYRO4DPgoULYuoFr+2sOY89xyceKK9P2+enWrZD2D7A/0Cgx3rSjByzjnw/e/bP0Uk1uYx47yTRas36HZPM1rbVY13RCCc566oRlhNm0eg1V2rN8TvXtbguMaYa4BrQsvODtz/UKxWBViwYEESLwObbQb+FUcwI9zTA15nIQCy2bI32eoPbl7B/6SBxNo8Zpx3smj1Bt3uaUZru6rxjgiE89wVlUaoafMItLpr9Yb43dN/qRhgcHAwuRdbscLeGgOzZ9tAePFi+NzncutMTtrbZ5+Fyy8vurkJ/6SV8jnfwyTa5jHivJNFqzfodk8zWttVjXdEIJznrqg0Qk2bR6DVXas3xO+uKhCePXt2ci/mZ4R7e20g/MQT09eZnLSB8oEHwgkn5LK9V18N//xn3qpN/slIWSCcaJvHiPNOFq3eoNs9zWhtVzXeEYFwnrui0gg1bR6BVnet3hC/e/o/IQHG/Q9+Evip974+O2rEmjXT15mctEPXPPecfeyP63j00XDIIfmrZjL2jrJAONE2jxHnnSxavUG3e5rR2q5qvCMC4Tx3RRlhNW0egVZ3rd4Qv7uqQLgxyQ/0Km+ouRNOsBnhKCYn4YILco/9QNgnm7VB8V//ivgBsLJAONE2jxHnnSxavUG3e5rR2q5qvCMC4Tx3RTXCato8Aq3uWr0hfndVgXCirFhhA9l3vctmhKPIZOyfTzgQHhqyZRJHHIH4E5coC4QdDofDkUIiAuE8FJVGOBz1RNUnZNLvnJYUftBaLCMcDH7DgXDgcdavH1YWCCfe5jHhvJNFqzfodk8zWttVjbc/oVMgEM5zV1QaoabNI9DqrtUb4ndXFQi3FLryrTWFMsLhQPjQQ+10zD6B5xqVBcA+dWvzGeK8k0WrN+h2TzNa21WNt58RDsyGmueuqDRCTZtHoNVdqzfE764qEB4ZGanPC5ebEX7wQTj88NzjwHMZ/76yn6nq1uYzxHkni1Zv0O2eZrS2qxrviNKIPHf/u0bBd46aNo9Aq7tWb4jfPf2fkABz586tzws3N9vbz31u+oQawRphgOAc2IFAuNk/WSnLDNetzWeI804Wrd6g2z3NaG1XNd4RgXCeu6KMsJo2j0Cru1ZviN9dVSDc19dXnxf2TzhLl9pJNXzCGeEwgefG/SmalQXCdWvzGeK8k0WrN+h2TzNa21WNd0QgnOeuqEZYTZtHoNVdqzfE764qEF4cDEKTZHTU3s6Zk7+8s7PsQHiWf1JSFgjXrc1niPNOFq3eoNs9zWhtVzXeEYFwnruiUSPUtHkEWt21ekP87un/hAToCJYdJInfOzfcae7hh4v/X2AawFGlV191a/MZ4ryTRas36HZPM1rbVY13RCCc566oNEJNm0eg1V2rN8TvrioQbvenPU4aPyNcaPSIQvT3T92d5WeClQ1ZUrc2nyHOO1m0eoNu9zSjtV3VeEcEwnnuikoj1LR5BFrdtXpD/O6qAuG6XcFEDFNTkGDKPhAIjw0M2DvhznUpR+tVo/NOFq3eoNs9zWhtVzXe5WaEFZRGqGnzCLS6a/WG+N2bYt1ajanbFcx3vgPz5+cPjVaIefOgu9veDwTCUyF0JgMDA/DUU/CKV8SuGjdarxqdd7Jo9Qbd7mlGa7uq8R4ft31OAhlflxFOHq3uWr3hZZ4R7goOXZYkW24Jl15aXkZ43rzcfT8LDIwPDdk7k5N22uY99siVXKSYurX5DHHeyaLVG3S7pxmt7arGe2zMZoMDHbDz3BXVCKtp8wi0umv1hvjdVQXCixYtqrdCNF/7Wu5+cHw7P/gFmo2xd/r6YPVqe3/9+gTkZkZq27wEzjtZtHqDbvc0o7Vd1XiPj09LzuS5K8oIq2nzCLS6a/WG+N1VBcL9gVKDVLHPPrn7wUD4s5+dujvpjyDxjW/kSieefTYBuZmR2jYvgfNOFq3eoNs9zWhtVzXe4+N59cEQcldUI6ymzSPQ6q7VG+J3T/8nJEBbW1u9FaIJji9cYMaTxmAZhD8c26OPgp8p9lm3LtcJIgWkts1L4LyTRas36HZPM1rbVY13RCCc566oNEJNm0eg1V2rN8TvrioQHk1rTW3wTSkwxJrxZ5YLctZZ8O1v5x6PjcHKlfDe9+avNz4OGzbEIFo5qW3zEjjvZNHqDbrd04zWdlXjHREI57krKo1Q0+YRaHXX6g3xu6sKhJubm+utYAmPHhF1FR5CRkait3XFFfZ2chLWrrX3r7wyf53TT4cVK+rSuS41bV4hzjtZtHqDbvc0o7Vd6+796KPw4oul14sIhPPcFZVG1L3NZ4BWd63eEL97+j8hAbLZbL0VLNdeCxs35h4HA+GmAiPSRWWEAe64Az71KfjmN2GXXeyy8LTN11xjb3t67O1jj+WC5hqTmjavEOedLFq9Qbd7mtHarnX3Pvpo+MIXSq8XEQjnuSvKCNe9zWeAVnet3hC/u6pA2ITraetJ8Iok2HO30kAY4Otfh5tuyj0O76c/JJvfyW7nnWHbbctWnQmpavMKcN7JotUbdLunGa3tWnfvjRshOGHAxAR89asQ/lUxIhDOc1dUI1z3Np8BWt21ekP87qoC4aZCQWY9CAbC/v0FCwoGwlJqauViA0T7gXAS4/719eUF4qlq8wpw3slSE++nn4Y774x/uyG0tnna0dqudfXOZu1ETIEx6LntNvjc5+DGG/PXjQiE89z9jLCC0gitxwroddfqDfG7p/8TEmDMH20hDQQD4Xnz4Lzz7PjA1b5Bjz+e/3hiws5oNzGRC4T/9a/pZRNx8vjjsHAhXHwxfOQj8MMfpqvNKyAR71tugV13LZ7trxDX3gG23hr23z/+7YbQ2uZpR2u71tV7aMgmIoKBcF+fve3tzV83IhDOc1eUEdZ6rIBed63eEL+7qkuCOcFhyupNuFj7k5+0t9UGwuHM1w9/CB/+sO1E5wfCn/scvPBCddsvh4cesrfXXgu/+x0Ac047rXavV0MSOVY+9CF45BHbuSU4lvQMSNUxXgFavUG3e5rR2q519faD3uA4qX5QHBUIh1zz3BUFwlqPFdDrrtUb4ndXlREeCF4l15vAtJZ5VHvSCde8+FnGF1+E+fNzy8M/j8WJP35xIMuQqjavgES8/XKXGL9oXHsnj2b3NKO1Xevq7QfAQQd/mR8k+4yNTZtZLs9dUWmE1mMF9Lpr9Yb43dP/CQmwcOHCeiuU5ogj4tmOPx7x6Gh+9jmTiWf7UUQEwjVv85ERe1HxrW/FutlEjpUaBMIqjvEItHqDbvc0o7Vd6+pdSSAcURqR564oI6z1WAG97lq9IX53VYFwVxKdxWbKoYfmRncAG8iefHLl2/Gv9MfG8uuCg53u4g6KIwLhmre5/3PfN75RfL3OTvj85/P3vwiJHCt++8f4RaPiGI9Aqzfodk8zWtu1rt5+sDs4mPuVsFhpRCgQznNXNHya1mMF9Lpr9Yb43VUFwkuXLq23Qnn4Nb1gA9pvfAPe8IbKtvGb39jb0dH8QHjNmtz9wcHqHaPwC9ADJ9eat7l/si41LuBZZ8G558J115W12Snvnp7aTVntB8Ixjmmo5hgPodUbdLunGa3tWldvP/ubzebK4yrICOe5K5pQQ+uxAnrdtXpD/O7p/4QE6AiOrZhmwlfgm2xCx69+Vdk2/vlPezs6WjiQi7vGJ+J1at7mftajVDDpj6FZZlA75b14MbztbVXKlcAPhGPMzJfV3gccAGecEdtrxoGaz2YEmt3TjNZ2rat3VCe5CgLhPHdFGWGtxwroddfqDfG7qwqE24uNtZsmIjrStbe3w9e+Vvz/rr02VxvsEy6NCBJ3Rth/nUBQWvM290sdSgXC5WaOPfK8//KXKsTKwHePMRAuq73vuAMuvDC214wDNZ/NCDS7F0JEDheRx0VkjYh8OuL5j4rIIyLygIjcICJbxu2gtV3r6h0Mdv0A2L8tozQiz11RjbDWYwX0umv1hvjdVQXCnZ2d9Vaoms7OTjuV8tNPwxe/GL3SYYfBj3+cv+wPfyhcDhAMhDduhA0bZibpZ1sDdbiRbS4Cp546s9fy8YPIUjPF+BcXZc4ok8ixUoOMsNZjPJXeRx8NP/lJydVS6T4DRKQRuAA4AtgFOEFEdgmtdi+wyhjzCuBK4Otxe2ht17p6R2WE/dsyMsJ57opKI7QeK6DXXas3xO+e/k9IgCVLltRboWqm3LfcEv73f6NXEoHZs8vfaFcX/Oc/9v6yZbBihT05ltmhjN5euPXW3GO/RjhQfrBkyRI7drEIXH99bt2LLy7fM8xNN8E//mHv1ygjvGTJklhrd6f429/ge9+z92uQEVZ1jN94I1xyCVBj72rfx6uvhtNPn758333zOmeqavPy2A9YY4xZa4wZBy4Hjg6uYIz5hzHGnwnmdmBF3BJa27Wu3sFgN1waUUZGOM9dUWmE1mMF9Lpr9Yb43VUFwr3hE4EiprkXGhC6koGijzgCdtgB3vrW3LLWVjjqqPL+/8AD4aCD7IQQkKvDHRqaWqW3txduvtk++OEPp2/DGBsgZ7O2tOLZZ0u/7mtfC697nb1fbocz/6ReKMh/4AHbmS7oXe4FQSUcdhh88IP2fg0ywqqO8de/Ht77XqDG3nGPjvLII/Dkk1MPVbV5eSwH1gUer/eWFeJU4Nq4JbS2a129Z1gjnOeuqDRC67ECet21ekP87qoC4XnB0RjSwCmn2CG9onjjG+GrX516OM39kUdy97/2NfjlL+39SjLCPn/4Q/7ja64pvO5tt9mRFAAee8ze+j8z+L2UA53w5s2blyvBmDdvemnCZZfZETEuucSO7LDlltNP2MXwg5yBAbjqqunPP/SQ7Tjol0aMjkZvZ//984ZXmzdvXu3HXK5BRrgmx3gmA3fdFf92A5TtfeeduQurcjnlFPjEJyp2isQYe5wH6u5Td15JEBE5CVgFRI5fKCKni8hqEVm9ceNGRkdHGR4eZmhoiLGxMfr7+8lkMvT09GCMmfrJsqOjg3nz5tHZ2Ykxhp6eHjKZDP39/YyNjTE0NMTw8DCjo6MMDAwwMTFBb28v2Wx2amgkv0OMf9vd3c3k5CR9fX2Mj48zODjIyMgIIyMjDA4OMj4+Tl9fH5OTk3R7Q1iGt9HV1UU2m6W3t5eJiQkGBgam7RNQcJ+Amu5Tprsb481OOtrRwfj4OFk/EPaO246ODnvumZyElpa8fZo1a9bUPk1456dMNlv0far1PpXzPvntXsn7lJZ9EpHYjr0k9ymTySTyearFPk145+9Kj72CGGPq8rfPPvuYSunr66v4f9JCpLv9WjZmfDy37NZbc8tn8heFv+0PfSj/9a+91j4+7jj7+KCDpp7r6+sz5vzz7eMPfMCY0dHc/z36qDH//d/2/re/bczmm9v7DzxgXyubjfYIOj7wQHFvf/nxx9vbH/yg+DZHRnLt3d9fvD0q4aGHjDnnnOi29tsvBkoe49ls5fv0qU/l3pdqOeMMY045JX9ZwKPsz2a57ldcUd4xXYhC7TQ8bJedfPLUomrOK8BqU6dzZ6k/4EDgusDjzwCfiVjvUOBRYJNytlvpOVvr+bqu3m94gzErV9pj9Ec/ssvmzzemqcku6+iwy/zj+Gtfy/v3PPdPf9qu86UvJSRfPVqPFWP0umv1NqZ690LnbVUZ4dbQdJKaKOoenDmumoxwmHDniIMOgiOPhBtusI/9EggfvxTi+eftbeDKqbW1Nfd47txcHTHY0oqnn7b3g1m1T34SXvlK+OMfS7uWm0319ynsXmB7ra2t8WaEDz64cG13oRKMbLbiMYzzjpPnn4fPfS6/bKSaffr3v+1tcKKXX/8aLr20/G38+MdT9cBRxPbZfOYZ+Mxn4LjjZradQqU2/q8egXbUfF4pwF3A9iKytYi0AMcDVwdXEJG9gB8DRxljNtZCQmu71tW7v9/29QD7K1k2a2+Xe5Ut/q9tEZMfQchdUY2w1mMF9Lpr9Yb43VUFwpla/tRdYxJ3DwZnt94Kf/5zLuC97z743e9yJ8oigXAmk8mVSrS05Jcm9PbaId+C2wB4/HF7W85Yf+XW8fqu3/xm8fW8n0wymUzhYeeqIXgBEKbQe/ue9+RmCCyTvOPkPe+x5TW3355bVs3kIP57FrzIOvFEu/0gHR2w7ba5mnGA970vcjjAot5RPP108Tb0Oemk0sMMlkOh994/TgO+ms8rURhjMsBZwHXYjO8VxpiHReRLIuJ3IPgGMBf4rYjcJyJXF9hc1Wht17p69/XBZpvZz1x/vz1ejYEttsg9DwUD4Tx3RTXCWo8V0Ouu1Rvid2+KdWs1Rsr4Qk4rZbvHcaWTzcK6dbDVVvk1vX427M474e1vzwU4fnDwwgv2NlAjLCK5TOIll+RnfoMMDua25x+k4extNgvnnJN7vPPO8N3vlr9PAM89Z4eJ8zMkYbwASETizQgXe/8KvY5f913RywRex//SC2b4ywkmw/jvQ/CXhyj++EdYu9ZebFx0kV3205+W9RJFj++xMdh66/KyvHGNjV0oEPY/A4HnNZ9XCmGMuQa4JrTs7MD9Q2vtoLVd6+rd3w8LF9pf3wYGcudiPxD2OwkVCITz3BUNn6b1WAG97lq9IX73sj4haRicHaBBwQe6EJHuUct23tn+DL10KVQzRMirXmW36/+MHexdGczaQi5IHhqyAYgfhAQC4YaGhtzjdets2UMUwQDGP0mHO7bdcw986Uu5x489BrfcUnKXgPwAsFiw5AWlDQ0N8QXCIyPFZ/GLMeDOO078YC0YwM4kEI7KvgfdS43MUYSin01/P/70p9yyakb06OvLDfd3+unFR0cpFQgH9lvzeSXNaG3Xunr398P8+TbhMDCQGzGizIxwnrui0gitxwroddfqDfG7l9xaWgZnB6Z6Cmok0n39+vyfoX1OP93+TN3ZaX+aBlvj65chgD25HXWUPWkGueIK2GUXuPtu+zg4yYbXe3Qag4P5AXMgkzsxMTE9gC60DZ8XX5y2HWD6rHlghz0rRDCbHQyqi41K4bXzxMREfAHqf/938edLvc6LL9qxa8sYWm7ihRegqcmOtex/2QWvfqsJhP22i/L03yvIfWEWG8pur72mj2dKic9m1BB51WR+jznG1ruPjNiJMoKB9XSh6OURgbDm80qa0dqudfOenLSfiwULCgfCJTLCee6KSiO0Hiug112rN8TvXk5YnYrB2QFmRQVSSoh032wz2Gmn4v/ol0rssgscfnhueV+fHTbtwQdhjz3sstNPt9vceedcgB0MfsPDrPn4GeEo7+bmygNhny9+MT+DHBWIhTvUBTOFftAC+eNrlhEIz5o1q3iA+qUv2QCznMzk/fcXf/7BB4u30aWXwurV8J3vlHyp2Y88Yp3OPTf3ZRf80M8kI5zJ2NKS4FBq3/qWdYPyMsL33Zd/QeZR9LPpvw9B90IZ9mI/efm10uW8Z6VqhAPPaz6vpBmt7Vo3b/8zEcwIh0sjSmSE89z9z7OCzJ/WYwX0umv1hvjdy/mExDY4+0zGpATYsGEDxugak9Lfp+effz5yn0qNoZfxgpjJxYvzB5GePZuOzk5YuZKh178egNHJSSYnJxndaivMU08x2N3NWDlj+g4N0VMgW7lxwwayxcoCfAYHmQxmcH2+8Y2pfRoJBrMF6Fi/HoD+Cy/MZbWBye5ujHfwT9x2G2O//a19n558kvETT8xtIJOho6ODoaEhujfmOsOH3yfj1SoP9fZOvU/Zs85i6Lvfnf4+lQq8zjuPzIc/nH/s+TPnAYNeRnbEe/+KHXu9/jimg4MYP1h7//unAsRuv0NjxD4VOvaM9/p9XV2w/faw33459299C/bdl0wmw7D/2uPjU58nE/qitRvqmzp+fZ577rmpfZq4805Gfve7qX0aihr8fGAg8vMUPILMwoV5/2K8gDoTCKjz3qfvf5+JVaswk5OMfP/7U+sEP0/jnks2cI547rnn8jzKOUc4SjNUzgV0Cqmbt39+jCqN8EeSKBEI57kryghrPVZAr7tWb4jfPdbOcoHB2Q+Oet4YcyFwIcCqVatMOKr3h8RYtGgRAEuXLgWgvb0dgJUrVyIiU8/P98oCgkNp+Ntc6H2J+lPx+dvwbxcvXgzAggULAGiJ+ML3l/nrhrfhb9t/reaIzki+24oVKxCRafvkPy64T96XbuOyZVOvA0BDw9Q22jyPWbNnQ2MjjVtvDdksc//yF/szWxRNTblM3dAQiwp0pNp8992Rcr74BwdpLJB5mH/vvbByZVkn5PaWFrjySuafcUbe8sbBQdv577HHaPaGMWs1Bt71LjuVrs/EBO3t7WSzWRoCZSMNDQ3575P3M33brFnQ2mrb+4ILaAP44Afz36cypvhtevHFqYkZFi5cmFe/Otd7D2Y3NMDVV7N4p51g8eLIY6/Ve0+bJiZyWct77rG3mQyL29oK71OI8DG0oK0tP8se9G9qosnbdpMITf4Mh7NnTx+poq9v6tgD4Kqr2OLoo2loaLD7tP/+NEOutCWqA+iVV9L+hS8Aoc9ToK1l8eK8MgzxjtfgSSvvffrUp2geHoZ//IPZ552Xa4eWllxb+DXkk5NTbbeFl22r5hzhKMz8cNmWEurm7Qe5CxbYYPjpp3OB8KJFtgNdidKIPHdFNcJajxXQ667VG+J3LycjvAHYIvB4hbcsDxE5FPgcdlzKKn6/LU2PPyOaQqp290sOQtmxPPwLCj9z6QUHnHwy3HFH9P/svXfufpHSiLKCYLAn7EI/ax9yCGyzTW5Gu2J88IPwjndMX75xIyxblr/MmOnZWi947Onpyf95vFAtcpF9n6KMQJitt7Y+f/rT9PGDvZmiGBqCo4+2YyyHGRyE229nwJ/lb2RkegA6MFC6NMIY+z588YvTnytVyxyuEf7LX6LLUMLL3va24sd3VJnCb38b3e7BZV4gOo1CGfrdd7e3Tz2Vv9yvkf7+93OjlATaQvN5Jc1obde6eYczwv39uWXz5tnvgBIZ4Tx3RaNGaD1WQK+7Vm+I372cT0gqBmeHXAZWI1W7ByezKISf7fIDmOBrXXfd9PV33BE23TT3eGgovz6tGnp7S483e+SRpbfjj0EcZmQEDjssf9n4+PQpnz/4QXjmGdvewcDPKx8B8oOtZctsXXUxoko+woyOwi9+YTPBF12UH8T69x96aPrr+xx/PBx4IAv8oHFkZHoA2d+fn9G94orchCY+/vPBYep8SnUw8L8w777b1p2/5S3R60WUOhQ9vqMC8AcftB3vwgQ7Ra4IdDVoCuSBg9tbsCDX4c+/IAwH6n77/8//2KEDIa8tNJ9X0ozWdq2bdzAjHK4Rnj/fLg8HwqFfW/LcFZVGaD1WQK+7Vm+I371kIJyWwdmBaXWJmqja3Q8MigXC/s/ifiDsZ4TBjjwR5rHH8jMJwaxoscxzMeK6QisWrB18MARKAxgcnB6k/vvf8N732vYOBkzB4DNUdpE3BjLYGfjWr89tu5zOWSMjuaDUq3Oe9toPPmhvx8Zyo4H43HgjAANPPpnbXrgt3vve/IuBd74T9t8/fx2/c2Rrq33v/+u/cs+Veo/8NnjqqeKjeURkiTs6OmyQGXWcF3pP16yxt8bYIQOHh/MvILYI/BAVLKMKvq/9/bnOf36wHA7UoyYhCWxD83klzWht17p5F6oRbmmxn+cFC3LHtv/LUCgjnOeuqDRC67ECet21ekP87mX9ZmKMucYYs4MxZltjzLnesrONMVd79w81xiwzxuzp/RUZ4LN68uoSlVG1+89+BqedBvvsU3idcG//4NXSunX56775zfY2WFMaDIS9WuWKieoQVQ3FZk6bPTt/drTBweiyhWzWtncwYAoGY36wWYhDD7VB2De+Yb+M/vOf0t4jI7nXC3/xRBX2hyeq8EpQ5gUnNwn/X6AD3hQbN9o/Y2zw6gfCbW122Lef/Sx/3WIUC/gPOCB3P2J/2p97zgblwY54PrvtVvx1//QnOPNM6xw8wQUD4eD7F84w+xeJ/rETPhYvu2z6awa2ofm8kma0tmvdvMOB8NiY/Tz7kxiVURqR566oNELrsQJ63bV6Q/zu6f+EBHhZXsHsuCNceGEu2/Xgg/nDX0HuhBeuEYbpgeLvf29vg4HwI4+A37mo2ozw8HA8UxoX20ZLy/RAOKpsobl5ekbYb5s1awrXTYf59a/B69BVkmAgfHXoB5FCUwaHO8MBI888U97rBVm50gbWe+xhncG+7/7kEz7FjsG5c22GOYqddrKlGz7+tK9B9tzT3oZLNT760VL2uZkLwxQKhMMBu1/H7v96Et7ehz88vbY6sD3N55U0o7Vd6+YdLo0AO9yhX64WzAgXCIRdRjh5tLpr9YY6ZYTTgruCwWbXVq3KX+af8Pygt7UVbr45+v/9E2cwEB4dzWULC0268a53lXYLDO1VNXEEwqtX0/7ww9G1qR//eGU+BUZZmEawlCEQ2Ja17UDGcnY1mfWxMTu+L9jSELBfmN6wYFMUO3mUGo4mXEpT7sxw3/526XXC79N228GWW+bXbgcv6MIdOP3HfrAblfleu3b6a77wAkxOqj6vpBmt7VrXjLCI/WXED343bMgPhKvJCCsIhLUeK6DXXas3vMwzwt2FMkcKqKl7OCMM8OpXF/8f/wQa/tnM79AV5k1vyp/UIkgwczdTKgmEzz03OhDu7YXXvnZ6gHXlldODqGKIFK/NDjIwAP/v/5W/bchlkQMTdmSCMwG+9a3lb8t/H6Nqwn2qvYo2ZnogfMMNpf+vnNE2YPr7dMopNrMcNewa2JKVIOGMcHC2PJ/vfS//cWenDbQ//nHV55U0o7Vd6+bd12eDXpFcRnj9+lwg7JdGGFMwEM5zV1QaofVYAb3uWr0hfvf0f0ICLCg0Jq4CaupeztS4YfyMcHhs1HC22WfRIvDHlg3yl7/YURKi1v/e92CTTcp3gsoC4T/9qXgHsPC2Hnyw8kA42DmvGOFylXL42Mfsz/bXXz+1qCmYTa7kmPHf+yeeyF9+9tm5ETP+/OfKHWF6INzdnT/LYSHKLZUJr1dqvN5f/jL/sdfRcCojHBUI//CH+Y/9i7qf/Uz1eSXNaG3Xunn39+c+834gHKwRXrDAflaCQyuGPit57opKI7QeK6DXXas3xO+uKhAeLDXea4qpqXs5U+OG8QPh8EQMhUoqFi+OPqHusQe84Q12rGDIdcZbsgTOOis/cC2HYp3lWlunB/uB2eemEdWpKjg8VynuuQe+8pXy16+Uyy6DCy4o/HxwyLBSRAX4K1fa8YTDgWOlRAXC5VDuRUQ4EPYzweXMaAhw8cW2Q6P/3laS+e7rU31eSTNa2zV2787O6I6uYfr7c9lfP/iF/NIIsFnhAoFwnrui0gitxwroddfqDfG7qwqEZ1caVKWImrr7WdxCnZ2i8E+g4ezb7Nk2oxYeWaHQaBKtrTZz6tfsbLutvfUD1kqCOSgeqLa0VBbIhgPh0dHK/j+KN72p8HOzZuVPVDJTCsz2F0lULfPmm9v3ptL3IEw4EC63brrcC7NCgXBUPXsh+vtLTzZSAM3nlTSjtV1j9/7KV+xINKWmu+/rm54RhvzSCH+9AoFwnrufIFFQGqH1WAG97lq9IX739H9CAowXyxamnJq6b7utDVaOPTZ/ebE64aiM8L772ttNNrGdlYIUCoT9E7GfkfQnQfCDoDizES0tudf56ldLr+8HWN/4hg0G//jH3Fi+hShUGuJTbBSEHXcsXNdaDTPNCPtj7wa309ubP7ZwORgT75fp+efb2002sV/ohUojXvMaO2lIOR3uJiervsjRfF5JM1rbNXbvf/7TJgYCfQEiKZQRDpZGgP0MFwiE89wVZYS1Hiug112rN8TvrioQblTwgS5EXdzDHZqWL8/d9wPgbbbJLbv22tz9sG+hYdX8E7GfAfa3d9pp0duZCc3NuYAvPN1yFCefbG/f/nYbFBYro/CJmokvSPgD2NcHH/iAvb/DDoWzlz//ue2IWGja4Cgq6YQYlaWNCoQXLChdgxtF1P+87nWVbwdsycQHPmDbrrV1+kWNfzEhYqfbjiqxOPfc/Mf+9NNV1I5pPq+kGa3tGqt3X18uAC41mozfWQ7yZ/gsVBohMu38mueuqEZY67ECet21ekP87qoCYUeFBIOyjRvh0Udzj9/4Rnt79tn2duXK/Ik4AJYswSxdaidKKBTg+QHS975ne/u/5S02w/fZz9rlcR6wIpUFwj5NTfkzkxWj1IQi4UB4/nw46CB7v7Exup3mz7dB+a672nKFcvjFL+AjHylvXYC//336sqhAGCoruQCbET78cLjtNjj11OnbL5dvfcveLltm/9cvZQhns8NBd5RveJ+6u61ncOpwh6Pe3HprbmSbUoFwVGc5mF4a0dtrPzt+WVohFI0a4XDUE1WfkMlKOoOljLq5v/71NlPZ3p5/ct1vP5vFPewwmwn2e94H6exk6Kmn4Pbb85e3tuaydv5Jdptt7Cxmra02SPFP0P7J+Le/jWd/qgmEofwsaLEvlmAtdJC3v92O/nDOOdFBW3Cb5Y7scdJJ+cFecGa3cokzEBaxDt/85vTtl8tb3mLHmn7LW4r/b/g9KCcQPu44exs8LsIdET//+ciXm4wab9oxY7Ser2P1vvlme6weckh5gbAf9DY3586xhTLCEee0PHdFpRFajxXQ667VG+J3VxUIt1Tzk25KqJv79dfD449HP+cHHIcfnuvkFmKa97p1dpD3++6bPk1wFP5JOCrTesQRpf8/jF8HWm4gvOuudrzYmU4B/bvfwWOPwStfCTfdlP9cc7OtYy1UGhEM7Mr5AEfVMd9wQ+XjAPtfpOEvwlLHYrjMIjhWc7D0oNJAuLnZZmxFitdSh8eGjhq2r9CXezDjHvx5+ec/L7jfes8q6Ubr+TpW71tugX32sf01Hn20cEdTf1i04DHrJy7CNcL3329nkNx66+LuikojtB4roNddqzfE764qEB6pZAzYlKHVfZr3ihW2hGKnncrrdOWfhKMO3ODMYWecMf35Bx6Ahx/OX/a3v9nRMYIB2QUX2CxjFNdeax3KGengYx8r/Nzb3mYDXYCDD7b3Dzxw+npxZITDNbHLl9tgMDh1djn4QXc5GdYg4R65UZOWQOWjUQTXLxZEh18vqpzEP67Crq96Ve5+sL1OPrmg74jigeXTzEvmnFf9huz44q95jR1NJpst3FnXH9c6eF7zA2A/OJ471wa3P/iBLY3wp1Mv5K4oI6z1WAG97lq9IX53VYHw3HJn+UohWt1n7B2sU1uzxpZi+Gy1Ve7+j340/X+XL4dddslf9vrXw+WX5wdzr361nVxjeNiOXRwkXPdciP32KzwzXFSntccft/V/YaKCzGCNnh+cvuIVhV2CgfCjj5bube531gtTaCbASq+m4wqEg21TLCMcvliICoT94P4978lfvueeufu7757/nN/2odeeqyBQ0MjL9pznc+edtoTh1a/ODatYqDzC/6xGZYT9ZSK5zq5/+APsvHNxd/9XMwVT6Wo9VkCvu1ZviN9dVSDcV2ocxhSj1X3G3sHpn7fd1k6+ATaTd/rp0f/z05/aQLPYCAvBoMoP7GbPtqULQcodb7BYcBjsZFiKHXecviwqI/yTnxTeRjAQ3mmn0sF8oXYqNCFFXD8rVRpABgPnYu9LOBCO+iL3g/Oww2ab2RFLzjhjetbZH6YtdBId2LixiLSjWtSf87q6Cl8ElsMtt9jP/qteZS+mFy8uHAj7U6MHM8JRI0h84Qu2TOvgg4u7gw2+n3su+pyUMrQeK6DXXas3xO8+w5H2k2VxJUNPpQyt7jP2DgbCkAsKzzijcFZw881zZQiltgv52zn+eJuFOeWU/NcrRbHgsJKxgb/wBRu4rl0LRx9thxiLyggXKw2odLDwQu9RoYxwOZ3lbr8dnn3WdkIrFAxUGggHX7fQcHyQX95Q6HX8YFkEjjoKrr7aPt50U7jwQns/fCEQDIS7unIqcY797JhC9Tmvq8uWgV18MZxwQnUbuuUW2G23XP+IvfeGe++NXvcPf7Dnif33zy0L1whDyZFkprV5sPwsxWg9VkCvu1ZviN9dVUa4o9LOQilCq/uMvf0gww8A/aAwmy0ckJXzU14wwA0GMiLTfy4PEu7o5lMsEK4k4Gtqgg9+0E4a4W8zKiMcFXx98pP2ttLhjgr9TFRuIBxVprH//rkxoQvVNc+kRrhQIHzRRdGlKOHX8oNzEfjc53LLgx3rwu+pHwgHAwugZ8OGws6OqlF9znviCdsxt9CU8+XwyCP5M03uvbetEQ4PwZjN2uES3/jG/DKgcGlEue4K0eoNet21ekP87qoC4XYFtU6F0Oo+Y++f/hTOPDP3U54fFBpTOJCq9DUryehtv33l2yg3qxwmahzPYhnh884r/VPsVVfZGfJ8nn02esKJhQsLz7534ok263rVVXYmvahaZyidOZ5JaUShQLjUeNU+fjs1NETvf3Bb/sQfBQLhRZWOfuEoC9XnvKeftg8KZXBLMTFhyxJWrswt23tvGwQfe6y9/+Uv2+X/+IcdjSd8AR+VES7HXSFavUGvu1ZviN9dVWlER0eH2jdPq/uMvbfYAn74w9xjPyg0pvyM8Oc+Nz2LEiQiiB17wxtoDQ4vdO+9dgzbQsF3LYaS8QPFcjPClNHexxxjbw86CP79b/slGRUI9vTkP/7Zz3IdDxcvtj/bBrd37rn5mVXItdVMSyO++U3rGGzjUjMVRi0Pjvzht2NDQ+GMeEODnc3Pny68QI1w7/PPU8DGMQNUn/P8QPiBB+zFa6UXfc89Z4/RYCD8qlfZ7O4DD9jbs8+2AfFvfmNrg48+On8by5bZMqsKXlt1myv0Br3uWr0hfndVgbDWNw30usfu7f/0t8UWhUsAwjWyX/lK8W1GBJWtf/tb/oI997R/UUNlbb45fOYzxV+jGvxAMmoc4QL7XnZ7/+lPNpO7cOH0QNivkQ3i10wX4rOfrTwQDl5UbLONrYtetMgG4Ucfnctcb701vPWt+f8704xwsEa4UEYY7DjSPgUCYVcjXBtUn/OeecY+GBmxHXfDo9eUYt06exsMhJcvt+OZi9iyiwMOsFngkRE7gU74vPfxj1dcn6y6zZWi1V2rN8Tvrqo0oivQwUUbWt1j937b22yAFByz9/3vn9k2I7K8Bb3D686ebScI2WuvmTlEEZURft/77G2BnzvLbu9Fi+DNb7b3g4HgPffYURPioNyM8Mkn0/3Xv9o6x2eftUFEsKd61P8He8cHqbQ0QqRwRjiMH1SEJnIZePHF8v7fUREzOnd0dubKExKmq6vLvrZfm1tNecSzz9rbYCAMuXPBrFk2Ezw6an/piOrXsGiR7WxXAe57Jnm0umv1hvjdVQXCi6JmJ1OCVvfYvf1e/n4QZQx8//vxvgZFvMOBcLX1v+UQVSP81a/aDNDs2bZz3PHH5/1LVe0d/J84A3o/KC0UCPs93N/8ZhZuu63Nas2da7/8/SmPIbqzXbESiGIu4W02NNhfBM48s3THpte+1u5LsHPglVfSdvjhxf/PURUzOne8//22lKAO08AuWrTIBsKve509tmYSCEd1/PTZcUe47DI7DnjU5DxV4L5nkkeru1ZviN9dVSDcX6gXvAK0uifi7Qejt9wC//xnLJss6F2PQDj4Gg0NuY5y5503bXaoqtq7Vie04MVKFPvsA4ODcNxx07332SdXhxweDs3nrrumT2JSTUZYxNahv/rV0f8bJlgKceyx9BfKTjtmRMFjuVSHUGPseWDDhpmN2lAl/X199leN7bazk7JUGwgvXly8bAdsUuD734/tPOS+Z5JHq7tWb4jfXVUg3FbqpJJitLon6v2qV9npSGOgoHelQ37NhKiMcAmqau+4AuGbb7Y/1/qU8m5unvqij/R+1atsULPpptH/v2rV9PGiC43qEQyERfID4UoJjRKh9bOZdiLbtaPD/tx/3nmF/3HtWvAnObn88tIvND5uM6pXXlmdaIi2wUFbsrDllvYXlnvvrXxijXXrppdFJIDWY1mrN+h11+oN8burCoRHR0frrVA1Wt1fct7h4C5YqxzFTEaT8IO0CoK1qtq7nAkyyuHVr84vaQgOdVfidas+TsLZ2ELBQzDbO39+7v/KnUI7SKhznNZjPO1Ma9ds1nbafOQR+N//LVwDfNtt9naPPWxw63dyLMRtt9kJYP7v/2aqDMD4f/5j72y1lQ2Ee3pypQ5hBgZgaGj68mefrUsgrPVY1uoNet21ekP87qoC4ea4vvDrgFb3l7S3MXDOOdOX339/7v7gYPUSwbFuyyRV7e17F/IPuFbtvfvu9vbcc+Hhhwuv9+1vw913wze+YQOf00+HCy6AD3+48tcMZYRT1eYvIaa16/nnwzXX2BFaGhoKj9Ry6622M+k559hRXv7+9+IvdN119vaee+wxMlNvf4IVPxCG6PKIbDY3ffI3v2mzyD7PPlu8PrhGaD2WtXqDXnet3hC/u6pAOFtohisFaHV/WXoHO1PN5ANXxc/3qWrvpUvhE5+A66+Pfj7QNlV7L1pk2+mzny0+RFVLix1z9eMfh513tiUu739/de9PKCOcqjZ/CZHXrv/6F3z603YYvXPPtcfV5Zfnsr9Bbr3VDi12xBF2mL1S5RF/+5sdGnH27OihA8MMDsIVVxQem9zPVG+5pT0XNDTA735nA/dTT83939/+ZscE3mwze1zuu6/NXg8M2GHS6pAR1nosa/UGve5avSF+d1WBsKm0TitFaHV/2XoHp+qtXsLeVhAIV+299daw007V/W8hRODrX58+hJM/z3sgCFV1nIQywqrcFTHVro88Akceacea/ulP7XH1iU/YAPKEE2w29fnn7boDA3Ya4gMPtBc/xx4Lf/hD/mQqQTo6bCb42GPhne+0ozAMDBQX++pX7br7728D2RDyzDP2GJ83z54Hdt4ZfvlL+2vExRfDt75lVzz/fLsP995rO7w99JDNSEeNIZwQWo9lrd6g112rN8TvrioQbkqyo1PMaHV/2Xo//TT4tYLV4o9DWqoD4MknT9U3Vu29di08+mh1/1spt91mv/gDM16pOk5CGWFV7opoamqC9evh8MPtxcdf/5rr2Dl3rg1aN9nEZlO32gpuugnuvNOWHLzylXa9977XBraFpgu//np7wfnGN9pymcHB4hnkbNaOd73bbnb2t1Wr7GudcsrUiDWN69ZZH5+LL7bb7OiwGe0vf9mWY1x3nR36rKUF3vEOu+5NNxUeQzgBtB7LWr1Br7tWb4jfXVUgPDY2Vm+FqtHqnmrvF16wX2YRzNi7vd0OnzQTNtvMZokuuKD4ej//uf3ZmJS3t88OO9gAIIAKb5/GRluKceedgDJ3RYyNjcFHPmLLBK69Nj+4BDjkEPsePPaY/UXjhBPgqqvsc/4Y1QcdZCebOO+8/Np9n+uus9nbffax5RS77WYD10LcdJMNzj//eVuTftZZ9sLo6qttVnl4GPP00/mu++1nM8iLFtladWPssGezZtngG2xAv+uu8I9/lDeGcI3Qeixr9Qa97lq9IX53VYHwnDh+rq4TWt1T7b1smQ02I0iN9667VjTyRGq8K0Sd97nn2ppOFLorYc6cOfDjH9tgdc89C6+4447w299CX5+9aNx11/wpuL/1LRvsnnoqZDK55cbYOt1DD7UXNyI2YL39dnuRHMWll9pfao46ytbAf+tbNnj94x+hqwt+9jMawhnhIFtuaYPo8XE7gUxwqtfXvtbWQj/5pPUpcG6qJVqPZa3eoNddqzfE764qEB4oVfuVYrS6O+9kcd7Jo9k9zQwMDNgAtpxZ03bfPTfDZHj9xYvtc3ffbTOyPg89ZGuLDzsst+zII+3tX/4y/TWGhuxwbMcdZzvWBXnVq2wW+stfRkZGCgfCYIdc/Pzn7RBwQV77WlvL/Pvfw/LlyY5Z7qH1WNbqDXrdtXpD/O6qAuGFwSyBMrS6v2S9t9wyEY9Kecm2d4rR7J5mKm7X974XLrlkqkwoj7e/HY4+Gs4+G9assbW+n/qULWsITpH9ilfYkoQ//Wn6Nq66ygbD73739Of8DnwvvmgfFzs/tLbaOuEVK/KX+30B1qypS30w6D2WtXqDXnet3hC/u6pAuKurq94KVaPV/SXp/cILtmd6CnlJtnfK0eyeZipuVxFbD7ztttHPXXCBLTM64ww70sS119rShs03z1/vqKPs2MP+uL5dXTZw/chHbKa30JTfxxyTe+1iGeFCLF2aG3qxDvXBoPdY1uoNet21ekP87qoC4aVLl9ZboWq0ur8kvZcts0MjpZCXZHunHM3uaSb2dl2+3A7nd+ON8MlP2s5t//3f09c78khbonDjjXZ4tO22s5nk/fazWeFCE8Q0Ntpyh2XLooPxcnjta+1tnTLCWo9lrd6g112rN8TvrioQ7ujoqLdC1Wh1d97J4ryTR7N7mqlJu552Grz+9Ta4veii6DG6DznEDs/2k5/Am98MbW12xIm//KV4pz2Ad7+bjgcesP9TDYccYm/rFAhrPZa1eoNed63eEL+71GtQ5VWrVpnVq1fX5bUdDodjJojI3caYVfX2SJLUnLMzGfsXmhglj2OPtZ3W5s2DW26BPfZIxm1w0I5u8dWvVp9VdjgcNaHQeVtVRrizs7PeClWj1d15J4vzTh7N7mmmZu3a1FQ8CAbbIW72bDssW4VB8Iy8586F3/ymbkGw1mNZqzfoddfqDfG7q8oIG2OQCqarTRNa3Z13sjjv5KnG3WWES1P3Y2J8vKIxvH3q7j0DtLpr9Qa97lq9oXr3l0RGuLe3t94KVaPV3Xkni/NOHs3uaabu7VpFEAwp8J4BWt21eoNed63eEL+7qkB4Xkp7+peDVnfnnSzOO3k0u6cZre2q1Rv0umv1Br3uWr0hfveyAmEROVxEHheRNSIybbRzEXmNiNwjIhkReXushgGGh4drtemao9XdeSeL804eze5pRmu7avUGve5avUGvu1ZviN+9ZCAsIo3ABcARwC7ACSKyS2i1Z4FTgMtitQvR2tpay83XFK3uzjtZnHfyaHZPM1rbVas36HXX6g163bV6Q/zu5WSE9wPWGGPWGmPGgcuBo4MrGGOeNsY8AGRjtQuRyWRqufmaotXdeSeL804eze6FKONXvFYR+Y33/B0islXcDlrbVas36HXX6g163bV6Q/zu5QTCy4F1gcfrvWWJo7WHI+h1d97J4ryTR7N7FGX+incq0GOM2Q74NnBeDTzi3mQiaPUGve5avUGvu1ZviN890c5yInK6iKwWkdUbN25kdHSU4eFhhoaGGBsbo7+/n0wmQ09PD8aYqbHi/FlEent7McbQ09NDJpOhv7+fsbExhoaGGB4eZnR0lIGBASYmJujt7SWbzU7NSe1vw7/t7u5mcnKSvr4+xsfHGRwcZGRkhJGREQYHBxkfH6evr4/JyUm6u7sjt9HV1UU2m6W3t5eJiQkGBgYK7lN/f3/kPnV2dqZ6n3yHSt6nNOxTQ0NDVe9TvfdpZGQk9mMviX3q7+9P9PMU5z719fVV/D6lnJK/4nmPf+7dvxJ4vcT87dJQaCrjlKPVG/S6a/UGve5avSF+96Yy1tkAbBF4vMJbVjHGmAuBCwFEpGP27NnPVLiJpYDWUaC1ujvvZHHeyVON+5a1EImJqF/x9i+0jjEmIyJ9wBJC7SAipwOnew8HReTxCjy0HhNavUGvu1Zv0Ouu1Ruqd488b5cTCN8FbC8iW2MD4OOBE6sQyMMY017p/4jIaq2D2Gt1d97J4ryTR7N7rQkmLypFa7tq9Qa97lq9Qa+7Vm+I371kftkYkwHOAq4DHgWuMMY8LCJfEpGjPKl9RWQ98A7gxyLycFyCDofD4aiIcn7Fm1pHRJqABUBXInYOh8ORIsrJCGOMuQa4JrTs7MD9u7AnW4fD4XDUl3J+xbsaeA9wG/B24EZjjEnU0uFwOFJAWYFwiqjqJ7qUoNXdeSeL804eze7T8Gp+/V/xGoGL/V/xgNXGmKuBnwK/EJE1QDc2WI4bre2q1Rv0umv1Br3uWr0hZndxSQCHw+FwOBwOx8sRveNnOBwOh8PhcDgcM8AFwg6Hw+FwOByOlyVqAuFSU4bWExG5WEQ2ishDgWWLReTvIvIf73aRt1xE5LvefjwgInvX0XsLEfmHiDwiIg+LyIc0uIvILBG5U0Tu97zP8ZZv7U0Xu8abPrbFW17z6WQr9G8UkXtF5M/KvJ8WkQdF5D4RWe0tS/Wx4rksFJErReQxEXlURA7U4K2VNJ+rw1R6Dkwb5Z5L0kYln8k0ISIf8Y6Th0Tk1953USrbXPTGJVHe3/COlQdE5CoRWRh47jOe9+Miclg1r6kiEJbypgytJ5cAh4eWfRq4wRizPXCD9xjsPmzv/Z0O/DAhxygywMeMMbsABwAf8No17e5jwOuMMXsAewKHi8gB2Gliv+1NG9uDnUYWEphOtkI+hB2K0EeLN8BrjTF7BsZwTPuxAvAd4K/GmJ2APbBtr8FbHQrO1WEqPQemjXLPJWmjks9kKhCR5cAHgVXGmN2wHVGPJ71tfgk645JLmO79d2A3Y8wrgCeAzwB4n9XjgV29//mBdw6qDGNM6v+AA4HrAo8/A3ym3l4hx62AhwKPHwc28+5vBjzu3f8xcELUevX+A/4IvEGTOzAHuAc7c1Yn0BQ+ZrC95w/07jd560mdfFdgT0CvA/4MiAZvz+FpYGloWaqPFez4uE+F2y3t3lr/NJyrS/gXPQem6a+Sc0ma/ir9TKblj9xsjIu98/GfgcPS3OYojUvC3qHn3gr8yrufd34JfmdW8qciI0z0lKHL6+RSLsuMMc97918Alnn3U7kv3s/uewF3oMDd+0nwPmAj9mrxSaDX2Algwm5508kC/nSy9eB84JNA1nu8BB3eAAb4m4jcLXbqXUj/sbI10AH8zPsJ+SIRaSP93lpR235lngPTxPmUfy5JE5V+JlOBMWYD8P+AZ4Hnsefju9HR5j4vhfPefwHXevdj8dYSCKvG2EuV1I5TJyJzgd8BHzbG9AefS6u7MWbSGLMnNiuyH7BTfY1KIyJvATYaY+6ut0uVvMoYszf2Z7QPiMhrgk+m9FhpAvYGfmiM2QsYIvSTa0q9HQmi7Ryo/Fyi8jPp1dMejQ3kNwfamP4TvhrS2MalEJHPYcuZfhXndrUEwuVMGZo2XhSRzQC8243e8lTti4g0Y78AfmWM+b23WIU7gDGmF/gH9iephWKni4V8t7RMJ3sQcJSIPA1cjv1J8zuk3xuYyohgjNkIXIW9AEn7sbIeWG+MucN7fCX2Szjt3lpR134VngPTQqXnkjRR6WcyLRwKPGWM6TDGTAC/x74PGtrcR+15T0ROAd4CvMsL4iEmby2B8NSUoV6PzOOxU4SmGX8KU7zbPwaWn+z10jwA6Av8VJEoIiLYGaYeNcZ8K/BUqt1FpN3vNSois7E1fY9iA+K3e6uFvf39qdt0ssaYzxhjVhhjtsIewzcaY95Fyr0BRKRNROb594E3Ag+R8mPFGPMCsE5EdvQWvR54hJR7K0bVubqKc2AqqOJckhqq+EymhWeBA0Rkjnfc+N6pb/MAKs97InI4tgzoKGPMcOCpq4HjxY6wtDW2s9+dFb9AvYqhK/0D3oTtLfgk8Ll6+4Tcfo2tGZrAXu2eiq3XugH4D3A9sNhbV7C9qp8EHsT2QK2X96uwP408ANzn/b0p7e7AK4B7Pe+HgLO95dt4H4I1wG+BVm/5LO/xGu/5bVJwzBwC/FmLt+d4v/f3sP8ZTPux4rnsCaz2jpc/AIs0eGv9S/O5OsK1onNgGv/KOZek7a+Sz2Sa/oBzgMe8751fAK1pbXP0xiVR3muwtcD+Z/RHgfU/53k/DhxRzWu6KZYdDofD4XA4HC9LtJRGOBwOh8PhcDgcseICYYfD4XA4HA7HyxIXCDscDofD4XA4Xpa4QNjhcDgcDofD8bLEBcIOh8PhcDgcjpclLhB2vGwRkUNE5M/19nA4HA5Hadw521ELXCDscDgcDofD4XhZ4gJhR+oRkZNE5E4RuU9EfiwijSIyKCLfFpGHReQGEWn31t1TRG4XkQdE5CpvfnhEZDsRuV5E7heRe0RkW2/zc0XkShF5TER+5c0Y5HA4HI4qcedshyZcIOxINSKyM/BO4CBjzJ7AJPAuoA1YbYzZFfgn8L/ev1wKfMoY8wrsDDn+8l8BFxhj9gBeiZ25BmAv4MPALtgZgg6q8S45HA7HSxZ3znZoo6neAg5HCV4P7APc5V34zwY2AlngN946vwR+LyILgIXGmH96y38O/FZE5gHLjTFXARhjRgG87d1pjFnvPb4P2Ar4V833yuFwOF6auHO2QxUuEHakHQF+boz5TN5CkS+E1qt2rvCxwP1J3GfC4XA4ZoI7ZztU4UojHGnnBuDtIrIJgIgsFpEtscfu2711TgT+ZYzpA3pE5NXe8ncD/zTGDADrReQYbxutIjInyZ1wOByOlwnunO1QhbuScqQaY8wjIvJ54G8i0gBMAB8AhoD9vOc2YmvSAN4D/Mg7aa4F3ustfzfwYxH5kreNdyS4Gw6Hw/GywJ2zHdoQY6r9dcLhqB8iMmiMmVtvD4fD4XCUxp2zHWnFlUY4HA6Hw+FwOF6WuIyww+FwOBwOh+NlicsIOxwOh8PhcDhelrhA2OFwOBwOh8PxssQFwg6Hw+FwOByOlyUuEHY4HA6Hw+FwvCxxgbDD4XA4HA6H42WJC4QdDofD4XA4HC9LXCDscDgcDofD4XhZ4gJhh8PhcDgcDsfLEhcIOxwOh8PhcDhelrhA2OFwOBwOh8PxssQFwg6Hw+FwOByOlyUuEHakEhF5WkQOrbeHw+FwOCrnpXgOF5FrReQ99fZwxIsLhBXinWBGRGQw8Ld5lds6RUT+VWKdm0RkNPR6f6rOvnaIyCEiYkTkU/V2iQNvX7art4fD4UgHSZ77ReRHInJpxPI9RGRMRBZX87reNi7xzm9Hh5Z/21t+SrXbnoGTEZEhr027ROQGEXlncB1jzBHGmJ8n7eaoLS4Q1suRxpi5gb/navx6Z4Ve78gav141vAfoBk6uxcZFpKkW23U4HI4KSOrc/3PgbSLSFlr+buDPxpjuGW7/CQLnau/8ehzw5Ay3OxP2MMbMBXYELgG+LyL/W0cfRwK4QPglgogsEpE/i0iHiPR491cEnj9FRNaKyICIPCUi7xKRnYEfAQd6V8G9VbzuISKyXkQ+KyKdXsbiXYHnF4jIpZ7XMyLyeRFpCDx/mog86nk9IiJ7Bza/p4g8ICJ9IvIbEZlVxKMNeDvwAWB7EVnlLf+UiFwZWvc7IvLdgN9PReR5EdkgIl8RkcZAm/3by1J0AV8UkW1F5EYvY9ApIr8SkYWBbe8tIvd6+/Nbz/srgeffIiL3iUiviNwqIq+oos0LtqmIbCci//TarFNEfuMtF28/NopIv4g8KCK7VfraDocjXdTq3G+MuQ3YABwb2FYjcCJwaalzYRn8CXiViCzyHh8OPAC8ENq///K+I3pE5DoR2TLw3HdEZJ13TrtbRF4deO6LInKFd64cEJGH/e+FUhhjOo0xvwD+G/iMiCzxtnmTiLwv8BqR318isrmI/M57T54SkQ9W0C6OhHGB8EuHBuBnwJbASmAE+D5MBYnfBY4wxswDXgncZ4x5FDgTuM3LLCys8rU3BZYCy7FZ2QtFZEfvue8BC4BtgIOxGYD3el7vAL7oLZsPHAV0BbZ7HPbkuDXwCuCUIg5vAwaB3wLXeR4AlwNvEpF53ms2etu9zHv+EiADbAfsBbwRmDrRAfsDa4FlwLmAAP8HbA7sDGzh7QMi0gJc5W1zMfBr4K3+hkRkL+Bi4AxgCfBj4GoRaS2yX1EUbFPgy8DfgEXACm9dvP16DbCD97/Hkd/WDodDJ7U8919K/i9shwLNwDUUOReWySjwR+B47/HJ3utNIbZ04rPY83s7cAv2vOpzF7An9nx7GfDbUMLkKOx3wELgarx2qYA/Ak3AfuEnCn1/eUmJPwH3Y78TXw98WEQOq/C1HUlhjHF/yv6Ap7FBX6/394eIdfYEerz7bd56xwKzQ+udAvyrxOvdBAwHXq8X+LL33CHYQLItsP4VwBeARmAc2CXw3BnATd7964APFdnHkwKPvw78qIjj9cD53v0TgA6g2Xv8L+Bk7/4bgCe9+8uAsWCbeP/7j0DbPFuibY4B7vXuvwabQZHA8/8CvuLd/6HfboHnHwcOLrBtA2wXWlaqTS8FLgRWhP7vddifIg8AGup9DLs/9+f+Kv+rw7l/JTDhn0+AXwHfKbDu1Lkw4HpogXUvAb4CvAq4DRuovgjM9s6Zp3jrXQucGvi/Bux30ZYFttuDLW8AG6ReH3huF2CkyL5OO996y18A3uXdvwl4n3c/8vsLmzx5NrTsM8DP6n38uL/oP5cR1ssxxpiF3t8xIjJHRH7s/VTeD9wMLBSRRmPMEPBObAbgeRH5i4jsVOHrfTDweguNMV8IPNfjvYbPM9gswVJs9uCZ0HPLvftbULweLPgT2TAwN2olEdkCeC32JA32Kn4W8Gbv8WXYABfsz3p+NnhLz+95r1ShF5ul3SSw+XWh11omIpd7ZRT9wC+9/QS7zxuMd+aL+P8tgY/5r+W93hbe/5VLqTb9JDZTc6f3U+B/ARhjbsRmQy4ANorIhSIyv4LXdTgc6SCxc78x5llveyeJyFxssHsplDwXlrv9f2EzvZ/D1h2PhFbZEvhO4HzZjT2/LfccPu6VJvR5zy8IOYS/Q2ZJBX09RKTZ84uqhy70/bUlsHnoPP9ZbOLFkUJcIPzS4WPYAv/9jTHzsdlJsCcNjDHXGWPeAGwGPAb8xHvehDdUBYskv0PFSuA5oBObTdgy9NwG7/46YNsYXv/d2GP5TyLyAraUYRa58ojfAod4dXNvJRcIr8NmhJcGvljmG2N2DWw73D5f9Zbt7rXzSXhtDDwPLBcRCay/ReD+OuDc0AXFHGNM8Ke+UhRtU2PMC8aY04wxm2MzxT8Qb+QJY8x3jTH7YDMjOwCfqOB1HQ5HOqn1uf/n2HPsscBTxpi7veXFzoWV8EtvH6aNUIE9Z54ROmfONsbc6tUDfxJb5rXI2PKOviodCnE09hfPOwu4RX1/rcO2U9B5njHmTTF6OWLEBcIvHeZha8N6xQ5rM9XT1btyP9oLVsewP61lvadfBFZ49a0z4RwRafFOTm8BfmuMmcSWSZwrIvO8Tg4fxZ74AC4CPi4i+4hlu2BHiAp4D3AO9idB/+9YbG3wEmNMB/YnrZ9hT1CPAhhjnsfW035TROaLSIPXAeTgIq81D9t+fSKynPxg8jZgEjhLRJq8+rZgbdlPgDNFZH9vf9tE5M1+/XIBWkRklv/nLSvYpiLyDsl1lOnBflFlRWRf73WbgSFsfV4Wh8OhnVqf+3+Hvdg+BxsUB1+30LmwEr6LLVm7OeK5H2E7q+3q7c8CrzbXf/0MtgyuSUTOxtbqzhgRWSy20/cFwHnGmKj+FIW+v+4EBsR21J4tIo0ispuI7BuHmyN+XCD80uF8bH1VJ3A78NfAcw3YYOk57E88B2N7wwLcCDwMvCAinUW2/33JH7vy7sBzL2CDruew5QlnGmMe8577H2zgtRZb+3UZtsMYxpjfYjugXQYMAH/AdnooGxE5AJsdvcDLhvp/VwNryJVEXIbt6HFZaBMnAy3AI94+XInNnBTiHGBvbObhL8Dv/SeMMePYTh2nYuvyTgL+jP0CwhizGjgNW6LQ4/mdUmIXH8Z+yfl/76VImwL7AneIyCC2c8iHjDFrsV8QP/Fe9xlsR7lvlHhth8ORfs6nhud+r7zid9jOt78KPFXwXFgJxphuY8wNoZIy/7mrgPOAy73yi4eAI7ynr8Pu6xPYc9oooVK2KrjfO3euwXaa/ogx5uwC3pHfX14C6C3YhMxT2PflImzZhiOFSMSx53CUjYgcAvzSGLOixKovS0TkDmwnv5/V28XhcDgcDkc+LiPscMSIiBwsIpt6pRHvwQ779tdS/+dwOBwOhyN5XCDscMTLjtjxI3uxHUDe7tUiOxyJISIXi5085aECz4uIfFdE1oidtGbvqPUcDofjpY4rjXA4HI6XGCLyGmxHpkuNMdNmEBSRN2Frzd+EHff0O8aY/ZO1dDgcjvrjMsIOh8PxEsMYczPRY5/6HI0Nko0x5nbsuLPFOok6HA7HS5KyB5aOm6VLl5qtttqqov8xxpA/RKsetLo772Rx3slTjfvdd9/daYxpr5FSEiwnv4f9em9ZXhmPiJwOnA7Q1ta2z4477oj/K6KIkM1maWhoIJvN0tjYSCaToampiUwmQ2NjI5OTkzQ1NTE5OTm1XkNDQ942/PaP2kbUrb+t8K+Z1W7Dd/C3MTk5SWNjY8ltpXGf/OM4vE/F3qc07NPExATNzc0VvU9p2SdjTFkemvYpzs9TLfap0PFSap/uvffeyPN23QLhrbbaitWrV9fr5R0Oh6NqROSZ0mvpxxhzIXbKblatWmXcOdvhcGil0HlbVWlER0dHvRWqRqu7804W5508mt1nwAbyZz1cQW7Gx1jQ2q5avUGvu1Zv0Ouu1Rvid1cVCLe36/0lUqu7804W5508mt1nwNXAyd7oEQcAfXGPbqK1XbV6g153rd6g112rN8TvrioQdlcwyeO8k8V5J49m90KIyK+xU37vKCLrReRUETlTRM70VrkGOzPhGuyMg++P20Fru2r1Br3uWr1Br7tWb4jfvW7Dp7l6M4fDoRURudsYs6reHkniztkOh0Mzhc7bqjLCXV1d9VaoGq3uzjtZnHfyaHZPM1rbVas36HXX6g163bV6Q/zuqgLhRYsW1VuharS6O+9kcd7Jo9k9zWhtV63eoNddqzfoddfqDfG7qwqE+/v7661QNVrdnXeyOO/k0eyeZrS2q1Zv0Ouu1Rv0umv1hvjdVQXCbW1t9VaoGq3uzjtZnHfyaHZPM1rbVas36HXX6g163bV6Q/zuqgLh0dHReitUjVZ3550szjt5NLunGa3tqtUb9Lpr9Qa97lq9IX53VYFwc3NzvRWqRqu7804W5508mt3TjNZ21eoNet21eoNed63eEL973aZYroZsNltvharR6u68k8V5J49m9zSjtV21eoNed63ekIx71mRpkMJ5S2MMo5lRMtkMIkJLYwvNDTZY7B/rZ+PQRua2zKW9rZ2mhqY87/90/YcGaWDTuZvS0tjC0MQQE5MTzG2ZS2tTK+v61vFY52MMTQwxq2kWLY0tCEJzYzMHrjiQ5kb7On2jfdyx4Q4Wz17MktlLGJ4Ypme0h4GxAUYzo4xPjtMgDRgMPSM9dA53AjCvdR4tjS2MTIyQyWbYbZPd2H/F/gjCmu41bBjYwND4EKOZUWY3z2Zeyzw2n705+6zcJ7b2VRUIr7p4FXtutieXHXtZvVUqpl7jNc8U550szjt5NLunGa3tqtUbprsbYxCRov+zcWgjfaN9ADQ1NDGvdR7zW+fT0thS8euPZcZobWrNWzY0PsT6/vVsHNrI+OQ4WZNl60Vbs82ibRgcH+TvT/6d25+9nUVti5jXMo+mhiYMNrDrG+3DYNhr071Ytfkq2lramMxO0tzYzNyWuYxMjHDP8/dwz/P3sGFgAxuHNjKSGQFAEJoammhqaKKtuY15rfPYpG0Ttl64Nbtusis7Ld0JsEHmTU/fxA1rb+D2Dbfz3MBzrJi/gs3mbsbg+CCdw52MTY4BsHzecj7xyk9w4BYH8kzvM1z24GVsMmsTTt77ZJobm6f256anb+Lf6/7N8vnLOXKHI9m1fVfW96/nmb5neLL7SZ7seZLukW6GJoYQhKVzlrJg1gJGJkYYyYyw6dxN2bV9V4Ynhvnrmr/yRNcTvHXnt3L63qfzTN8zXPHwFTze9ThZk2VicoLuke4pR59GaaSpoSlvuSDsuHRHjtrhKDafszm/fOSXrH6u+rHBd99kdy466iI2Dm3kjD+fwXMDz1W9rUo4dY9TuWjlRbFtT1UgbDBMZCfqrVEVTU2qmnoK550szjt5NLunGa3tWon3yMQI45PjzG+dz3MDz/Hju3/MVY9dxcVHXcy+y/eNxWcyO8l9L9zHglkLWD5vOev613HrultZ072G8clxAPZbvh+v2/p1PNPzDH+/7+/cuu5WHtr4EM/0PcMmbZuw1cKt2G7xduy0ZCeWzllK31gf6/vXc8NTN/DQxoemvWZLYwvH73Y8HzngI+y56Z4YY/j3un/zw9U/5G9P/o1FsxaxfP5yPnXQpzh8u8MB+Nq/vsbnbvwci2cvZvvF2zM0McS6vnX0jPZE7tfclrmMZcaYyE4gCIbpFyCCICJkTems66ymWSxrW0Zbi+1IlTVZJrOTjE+OMzwxzMC4zUz67L7J7hy27WFc/cTVPNH1BE0NTeyxbA92ad+FDf0b+E/Xf5jXOo8ls5ewePZiAG559haueuwqdm3flUc6HplyPudf57Dnpnvy97V/t5nLptnst3w/7nvhPq5+/Oo8zyWzl7Dt4m1ZNncZbc1tGAxdw11s6N/A7ObZzGqaxUMbH+IPj/2BpoYmXr3y1Ry0xUFc8cgVXPHwFf+/vTePj6wq8//fJ/ue7qTD1gvd7LTsNC6AoiiCG8uIIipuwzgzL52v851xQ/3pDI7Od3BGnXFwGZfRwQVcZxhFQQHFDaSRtWkbeqe7gU4qqaSSSu3n90ctVNKppFK5dep+7PN+vfLqqls3N+976sntp5489xwAjlp+FOeuObeU7A50DjDQOZD/EGEtqWyKqfQUmVyGQ7oP4ZDuQ5hMTfL05NP8Zs9v+OTdnySTy7B+aD2fvvDTLOtYxpOTT5LKpuht6y0l9VOpKVb1reLEoRNZ1rGMRCZBMpNPrHeP7+Z9P3sfz/3Sc7FYTj7kZL7wyi+Qszki8Qjdbd0s61hGb1svna2dtDW3lT6oLe9czmDnIMYYYskYqWyKztZOAO5/8n7u2XsPLU0tHDtwLKv7V9PT1kNHSwfxdJzJ1CRdTV0LxsNikFpZ7qTrT+K4Fcfx/Su+Xyer+jExMUFfX1+jNRaN93aL93ZPLe5+ZbmFCWtM3LXrLr6/+fv844v/sfSfbzkLeU+lprjm9mv4xa5fsGn/JrI2S0tTCzmbw1pLS1MLV558JV+79GsAxJIxHos8xplHLPyn3EeHH+W6X19HIpPg9MNOJ5FJ8OX7v8wTE08csG+TaaK9uZ2czR1QDTx+8HhOOfQU1i1bx/74fnZGd/J45HH2xvaW9mlvbuf5Rz6fC466gJW9KwFIZVNMpibZPLKZ/3rwv5hKT804bn97P5eccAmJTIL79t3HrvFdfOvV3yKWjPG2m9/Gy455GSt7V/L4aD6JXNO3htX9q1ndt5pDew6lvbkdi+XxyOM8+PSDdLZ08orjXsFJ/SfR3dPNRHKilPS2t7TT195HKpvi/ifv5/6n7iedTdPc1EwmlyGWjNFkmjj98Hy1eKhraMHqdzQRZWd0J7/e/Wu+/vDXuXvP3Txv1fN4x1nv4LITL6Ordf4Eayo1xec3fp7vPPodXnLUS/izM/6Me3fdy2cf+Czbx7bzquNexavXv5qzV59dSvwe3v8wu8d3s6Z/DWv617CsY9m8P6NIIpPAWluK0Xg6zi2P38LaZWs58/AzFzzX+RhPjLNp7yaed9TzlnScieQEH/3FR1neuZx3n/3umv6KUNPPrfHaUum6LZUIn/b501jTv4abr7x54Z1DRiaTkayQeG+3eG/31OLuE+GFcRkTT8aenNH/OBfWWj5196d470/fS9Zm+atn/xX/9rJ/m7HPU5NP8fl7P4/FkrM5do7v5LHIY5x+2On8y0v/hbbmNi696VJ+svUnXHDUBWw4YgPLO5YzOj1Ka3Mrbzr1TXz8lx/npk038fS7n6artYu3/s9b+dbD3yL6/igdLR1zusXTcf7ih3/B1x/6Ot1t3azoWsHO6E4AXnr0S7nqlKvI5rLsmdjDId2HcM6aczhhxQk0mSbS2TS/2/s7fr7z5wx0DPCqE17Fqr5Vc/6cWDJGNBFleedyulu7502CxqbH+ObD32Q4PgzA2mVrec3615QqruOJcV7+zZdz9567MRjOX3c+P3z9D2tKhhp1/ZhKTZXOp1ZUr32q3lC7e6XrttQoGGvI2myjNWoiFotJruTivd3ivd2j7B5mXI3r2PQYx37mWM5dcy43X3nznIlYLBnj6v+9mm9v+jaXnXAZQ11DfOZ3n+GVx72Slx790tJ+n7nnM3z8Vx8vPV/dt5q1y9byH/f9B79+4tesH1rPLY/fwudf8Xn+fMOfz+nz+pNfz5fv/zL/u+V/OXv12Xz9oa+TyWXYGd1Z6kudzXW/vo4bHrqB95z9Ht57zntZ0bUi3/eZSXJ47+Hznn9rcyvnrDmHc9acw9jYGMv7Ko95b3svve298x6vyPLO5bzj2e+o+Hp/Rz+3vvFWXvOd1zCRnOB7r/1ezRXBRv0OLjUJBt3rh6o3BO8ulQi3t7aTzWkmwsuWLWu0Qk14b7d4b/cou4cZV+N6x447mEpPceu2W3nLf7+Fr//J12fcYf+HkT/wJzf9CVsiW/h/L/5/vPec95LIJPjVE7/iLf/9Fh7+y4cZ7BrMH2vnHZy96mx+/ae/nnGj2W3bbuPK713JI/sf4SPnfaRiEgxw3pHncUTvEXzj4W9w9567yeQyAGwf2z5nIvzE+BNc9+vruOJZV3DdBdeVthf7UheD61juaevhx2/4cVU35c2H8u+gqruqNwTvLjWPcC6bK11U1IhEIo1WqAnv7Rbv7R5l9zBTz3Etb+m7bdtt9LX3ce0Lr+Vbj3yLv/7JX5def3T4UZ7zpecwEh/hp1f9lPed+z6MMXS2dvL1y77O01NP82/35NsjJpIT3Lv3Xp572HMBZiR2Lz36pTzw5w9w0+U38ZHzPjKvW3NTM1eedCU/3vpjvvj7L5YqzttGt825/zW3X0PO5vinl/xT7QNSoFGxvJQkGLR/B1XdVb0heHepRLijrUO2NWLFihWNVqgJ7+0W7+0eZfcwU69xff/P3s8FN1yAtRZrLbdtv40XrX0RH3rBh/i/z/2/fOZ3n+Hjv/w40USUS2+8lI6WDn73Z7/j/HXnzzjO6YefznlHnsdNm27CWstdu+4ia7O8cv0r5/y5q/tX89pnvbaqpO8NJ7+BTC7DVHqKf77gn+lu7Wbb2IGJ8D177uEbD3+Dd5/9bo5cdmRtA1KGaiyreoOuu6o3BO8ulQjbrJWtCA8PDzdaoSa8t1u8t3uU3cNMvcZ1S2QLt++4nd888Ru2jW1jZ3QnFxx1AcYY/vml/8wbT3kjH7rzQzzvy89jR3QH33vt91i7bO2cx7riWVewJbKFh55+iDt23EFHSwfHdByzZMfTDjuNMw4/g8tOuIyTDz2ZoweOPiARttby3p+9l0O7D+X9575/yT8TdGNZ1Rt03VW9IXh3qR7hjvYOplJTC+8YQoaGhhqtUBPe2y3e2z3K7mGmXuNanF7rX+/5V1609kUApfaDJtPEVy7+CpF4hB9v/TGfe8XnOHfNuRWP9er1r+Ydt7yDGx+5kTt23ME5q89h9eGrl+xojOGXb/0lzaYZyM/7+ljksRn73LrtVu7adRfXv/x6etp6lvwzQTeWVb1B113VG4J3l6oI5zI52daIkZGRRivUhPd2i/d2j7J7mKnXuBZvmP7+5u/z1Qe/ypH9R3LMwDNV3NbmVr5/xff57Z/+lj8/s/JNbQArulbw4qNezNce/BoPPv0g5687PzDvrtau0iprRy8/mu1j20tJfM7m+MDtH2DdsnVcfcbVgfw80I1lVW/QdVf1huDdpRLhzvZO2daIwcHBRivUhPd2i/d2j7J7mKnXuOZsjsN7Dsdi+d3e35XaIsrpaOnguaueW1U/7xXPuoInJ58E4Px159fF++jlR5PIJHgylv853330u9z/1P1c+6JrA12EQDWWVb1B113VG4J3l0qEc5mc7PRp0Wi00Qo14b3d4r3do+weZuo1rjmbY03/Gi494VKAGfMA18JlJ1xGa1MrvW29bDhiQ128jx44GqDUJ/wPd/0DJx1yEleedGWgP0c1llW9Qddd1RuCd9fqEW7rIDulmQj39lY3iXnY8N5u8d7uUXYPM/Ua15zN0WSa+PALPsxkapILj7lwScdb3rmct53+NppNMy1NLXXxPmr5UUB+LuGVvSt5eP/DfPrCT9Pc1Bzoz1GNZVVv0HVX9Ybg3aUqwjanO2tEPB5vtEJNeG+3eG/3KLuHmXqNazERPvWwU7n1jbfS19635GN+/pWf5/pXXA/Ux/vI/iNpNs1sG93Gjx7/EQCvPG7uadqWgmosq3qDrruqNwTvLlURbmttk22NaG9vb7RCTXhvt3hv9yi7h5l6jWvO5gKvpJZTD+/W5lbW9K9h29g2frfvdxw/eHypXSJIVGNZ1Rt03VW9IXh3qYpwE02yFeFMxnu7xHu7RdUbtN3DTL3GNWuzM5ZQDpp6eR89cDQPPv0gP9/587pUg0E3llW9Qddd1RuCd5dKhJtNs+z0aUtdgrJReG+3eG/3KLuHmXqNa7E1ol7Uy/uoZUfx6PCjpLIpXnHsK+ryM1RjWdUbdN1VvSF4d6lEuLW5VbY1oqlJaqhLeG+3eG/3KLuHmXqNa70T4Xp5F1sh+tr75l3kYymoxrKqN+i6q3pD8O5SI2GskW2NSKfTjVaoCe/tFu/tHmX3MLOUcb1r113c9MhNc75W70S4XvFw9PJ8Inzh0RfS2txal5+hGsuq3qDrruoNwbvr3Swn2hrR0dHRaIWa8N5u8d7uUXYPM0sZ1/f+9L3sn9rPFSddccBr9U6E6xUP64fWA5TmP64HqrGs6g267qreELy7VEXYZnWnT5uammq0Qk14b7d4b/cou4eZWsd1dHqUe/fdy0RyYs7XczZHs6nfrBH1iocTh07k4b98OPBFNMpRjWVVb9B1V/WG4N2lKsKdHZ2yPcJ9fUuf67IReG+3eG/3KLuHmVrH9Y4dd5CzOWKp2Jyv17siXM94OOmQk+p2bNCNZVVv0HVX9Ybg3aUqwplURrY1YmxsrNEKNeG93eK93aPsHmZqHdfbtt0GQCqbIplJHvB6Nlff6dOU40HVXdUbdN1VvSF4d6lEuKerR7Y1YnBwsNEKNeG93eK93aPsHmZqGVdrbSkRBuZsj6h3RVg5HlTdVb1B113VG4J3l0qEk9NJ2daI4eHhRivUhPd2i/d2j7J7mKllXB8ffZxd47t43qrnAczZHlHvRFg5HlTdVb1B113VG4J3l0qE+3r6yNos1tpGqyyaoaGhRivUhPd2i/d2j7J7mKllXIvV4Fef+GqgMRVh5XhQdVf1Bl13VW8I3r2qq4kx5iJjzBZjzFZjzPvneP0txphhY8wDha+rA7UskJhOAPkLoRqqn768t1u8t3uU3cNMLeN627bbOGbgGE497FQAYklfEV4Mqu6q3qDrruoNwbsvOGuEMaYZuB64ANgD3GuMudla++isXW+y1r4zULtZ9PXk7xTM2izN1G/6nHqg+unLe7vFe7tH2T3MLHZcE5kEd+68k6tOuYretl6gckW4ual+13/leFB1V/UGXXdVb2hMRfjZwFZr7XZrbQq4EbgkUIsqSSVTAJI3zI2OjjZaoSa8t1u8t3uU3cPMYsf11q23Mpma5NITLqWvPV/0mCsRztr6zhqhHA+q7qreoOuu6g3Bu1dzNVkJPFH2fE9h22xebYx5yBjzXWPM6rkOZIx5uzFmozFm4/79+0kkEsTjcaampkgmk0xMTJDJZBgbG8Nay8jICFBWBi90RIyMjpDJZJiYmCCZTDI1NUU8HieRSBCLxUin00SjUXK5HJFIZMYxiv+Ojo6SzWYZHx8nlUoxOTnJ9PQ009PTTE5OkkqlGB8fJ5vNlgZ99jEikQi5XI5oNEo6nSYWi1U8p1wuN+c5jYyMYK1lbGwslOfU1NS06PcpDOfU399f0/vU6HNqbm4OPPZcnFMul3P6+xTkOWWz2UW/T56F6e/vX9T+33n0Owx0DvCitS8qJcKNuFlusd5hQtVd1Rt03VW9IXh3s9CNZ8aYy4GLrLVXF55fBTynvA3CGDMITFprk8aYPweusNaeP99xN2zYYDdu3Lgo2X+88x/5wF0fYOx9YyzrWLao72004+PjkoHnvd3ivd1Ti7sx5j5r7YY6KYWSxV6zFzOuiUyCQz5xCK991mv50sVfYiI5Qf//6+cTF3yCd5/97hn7HvnpIzl/3fn85yX/uSj/ajnYYjkMqHqDrruqN9TuXum6Xc3H6r1AeYV3VWFbCWttxFpbnPn8S8CZizasgo72/PrSiq0RnZ2djVaoCe/tFu/tHmX3MLOYcb1t223EUjFes/41APS09QDz3CxXxwmPlONB1V3VG3TdVb0hePdqrib3AscaY9YZY9qA1wE3l+9gjDm87OnFwObgFMsotEYoziWcSqUarVAT3tst3ts9yu5hZjHjWmyLOH9d/g+JTaaJnraehkyfphwPqu6q3qDrruoNwbsvOGuEtTZjjHkncCvQDHzFWrvJGHMtsNFaezPwf4wxFwMZYBR4S6CWBVqbWwEkl1lubtaa5aKI93aL93aPsnuYqXZck5kkN2+5mctPvLx0jQfoa++r2CNcz1kjlONB1V3VG3TdVb0hePcFE2EAa+0twC2ztn247PE1wDWBms1B8eKn2Brh8Xg8ngP51e5fMZGc4E9O/JMZ2/va++aeNSJX31kjPB7PwYXU1aQ4d3A6m26wyeIp3pmuhvd2i/d2j7J7mKl2XIvJ7sq+mZMR9bb1NqQ1QjkeVN1VvUHXXdUbgneXSoQ72/IN0umcXiLc1tbWaIWa8N5u8d7uUXYPM9WOa7HVrdnM/HPnfK0R9UyEleNB1V3VG3TdVb0heHepRNhm81O9pbJ6Td6qc496b7d4b/cou4eZase1ePPz7L7f3vbGVISV40HVXdUbdN1VvSF4d6lEuK87P8m6YmtET09PoxVqwnu7xXu7R9k9zFQ7rjmbnw5odnLb195Xefq0OibCyvGg6q7qDbruqt4QvLtUIpxO5BNgxdaI8fHxRivUhPd2i/d2j7J7mKl2XCu2RrTNfbNcvRNh5XhQdVf1Bl13VW8I3l0qER7oHwA0WyMGBgYarVAT3tst3ts9yu5hptpxXag1YvbqpzmbOyBpDhLleFB1V/UGXXdVbwjeXSoRjsfigGZrxPDwcKMVasJ7u8V7u0fZPcxUO67ztUZkbZZEJjFje9bWd/o05XhQdVf1Bl13VW8I3l0qER4aHAI0K8JDQ0ONVqgJ7+0W7+0eZfdKGGMuMsZsMcZsNca8f47X1xhj7jTG3G+MecgY8/KgHaod10qtEb1tvQAHtEfUuzVCOR5U3VW9Qddd1RuCd5dKhCfHJwHNHmHVT1/e2y3e2z3K7nNhjGkGrgdeBqwHrjTGrJ+124eAb1trTwdeB3w2aI9qx7VSa0Rfe/7m6NlTqNU7EVaOB1V3VW/QdVf1hoO8InzoikMBzdYI1U9f3tst3ts9yu4VeDaw1Vq73VqbAm4ELpm1jwX6Co/7gX1BS1Q7rvO1RoCvCC8GVXdVb9B1V/WGg7wiPBWbAjRbIyKRSKMVasJ7u8V7u0fZvQIrgSfKnu8pbCvn74A3GmP2ALcAfxW0RLXjWrE1ov3A1ojijXP1TISV40HVXdUbdN1VvSF4d6lEeMXyFYBma8Ty5csbrVAT3tst3ts9yu5L4Ergq9baVcDLgRuMOTC7NMa83Riz0Rizcf/+/SQSCeLxOFNTUySTSSYmJshkMoyNjWGtZWRkBMj/6XL58uWMjIxgrWVsbIxMJsPExATJZJKpqSni8TiJRIKp6XyBYzI2SS6XK/0nl43nE+Q9w3sAGB0dJZ0pXPstTE5OMj09zfT0NJOTk6RSKcbHx8lms4yOjpY8yv+NRCLkcjmi0SjpdJpYLHbAOTU3N1c8J6Cqc4rFYqTTaaLR6Ixzmu0zOjpKNptlfHycVCq15HPq6emZ85zme5/CcE7FJXMX8z6F5ZxaW1sDiz2X52StDTT2XJ5TLperKfYqYWZPTeOKDRs22I0bNy7qex554hFO/srJfPFVX+TqM66uk1l9iEajLFu2rNEai8Z7u8V7u6cWd2PMfdbaDfUxWhrGmOcBf2etvbDw/BoAa+0/lu2zCbjIWvtE4fl24LnW2v2VjrvYa3a14/rJ336Sv73tb4m+L0p/R39p+5aRLZxw/Ql8/bKv84ZT3gDk/xrY/g/tfOz8j/GB53+gapfFcLDFchhQ9QZdd1VvqN290nVbqiLc35O/SCr2CHd3dzdaoSa8t1u8t3uU3StwL3CsMWadMaaN/M1wN8/aZzfwYgBjzIlABxDoHSjVjutCPcLlN8tV2jdIlONB1V3VG3TdVb0heHepRDiXzl8EFXuEE4nEwjuFEO/tFu/tHmX3ubDWZoB3ArcCm8nPDrHJGHOtMebiwm5/C/yZMeZB4FvAW2zAfx6sdlwXmjWivEfYRSKsHA+q7qreoOuu6g3Bu7cEerQ609XeBWj2CLe2tjZaoSa8t1u8t3uU3Sthrb2F/E1w5ds+XPb4UeCcejpUO66Vbpbrau2iyTQRS7qtCCvHg6q7qjfouqt6Q/DuUhXhFpPP2xVbI4rN3Wp4b7d4b/cou4eZase1UnJrjKG3rdd5RVg5HlTdVb1B113VG4J310qEm/KJsGJrRKNuSlwq3tst3ts9yu5hptpxrdQaAfkp1CZSBybCs6vHQaIcD6ruqt6g667qDcG7SyXCba1tNJtmydaIlhapLpQS3tst3ts9yu5hptpxLbZGzFXl7Wvvc94aoRwPqu6q3qDrruoNwbtLJcLJZJLW5lbJinAymWy0Qk14b7d4b/cou4eZasd1vpXi+tr7ZrRGFKvH9UyEleNB1V3VG3TdVb0heHepRLirq4vWplbJHuGurq5GK9SE93aL93aPsnuYqXZcs7lsxVaH3rZe59OnKceDqruqN+i6q3pD8O5SiXAsFpOtCMdisYV3CiHe2y3e2z3K7mGm2nHN2uyc/cFwYEXYRSKsHA+q7qreoOuu6g3Bu0slwsuWLaPJNGHRa/JWXcHFe7vFe7tH2T3MVDuu81aE293PGqEcD6ruqt6g667qDcG7SyXCkUgknwgL3u1YXO9bDe/tFu/tHmX3MFPtuM7bI9zm/mY55XhQdVf1Bl13VW8I3l0qEV6xYgUGU7oYKrFixYpGK9SE93aL93aPsnuYqXZcF2qNiKVipeJHafq0CvsHgXI8qLqreoOuu6o3BO8ulQgPDw9jjJFsjRgeHm60Qk14b7d4b/cou4eZasd1odaInM0RT8fz+84z1VpQKMeDqruqN+i6q3pD8O5SifDQ0JBsa8TQ0FCjFWrCe7vFe7tH2T3MVDuuC02fBpT6hF20RijHg6q7qjfouqt6Q/DuUonwyMiIbGvEyMhIoxVqwnu7xXu7R9k9zFQ7rvO1RvS29QJuE2HleFB1V/UGXXdVbwjeXSoRHhwclG2NGBwcbLRCTXhvt3hv9yi7h5lqx3W+1oiOlg4Aktn8BPouEmHleFB1V/UGXXdVbwjeXSoRjkajstOnRaPRRivUhPd2i/d2j7J7mKl2XHNUbo0obi8mwC4SYeV4UHVX9QZdd1VvCN5dKhHu7e2VbY3o7e1ttEJNeG+3eG/3KLuHmWrHNZur3BpR3F5cWrk0a0SFCnIQKMeDqruqN+i6q3pD8O5SiXA8Hs+3RgjeLBePxxutUBPe2y3e2z3K7mGm2nHN2sqtEcXtxdkiXFSEleNB1V3VG3TdVb0heHepRLi9vV22NaK9vb3RCjXhvd3ivd2j7B5mqh3XairCxQS4WBmuZyKsHA+q7qreoOuu6g3Bu0slwplMRrY1IpPJNFqhJry3W7y3e5Tdw0y14zrf9GnF7bNbI+qZCCvHg6q7qjfouqt6Q/DuUomwMUa2NcIY02iFmvDebvHe7lF2DzPVjmvYWiOU40HVXdUbdN1VvSF4d6lEuKmpSbY1oqlJaqhLeG+3eG/3KLuHmWrHdTGtES4SYeV4UHVX9QZdd1VvCN5daiTS6bRsa0Q6nW60Qk14b7d4b/cou4eZase1ltaISolzECjHg6q7qjfouqt6Q/DuUolwR0eHbGtER0dHoxVqwnu7xXu7R9k9zFQ7rmFrjVCOB1V3VW/QdVf1huDdpRLhqakp2daIqampRivUhPd2i/d2j7J7mKl2XBczj3AxIa5nIqwcD6ruqt6g667qDcG7SyXCfX19sq0RfX19jVaoCe/tFu/tHmX3MFPtuFbTGuGyR1g5HlTdVb1B113VG4J3r+pqYoy5yBizxRiz1Rjz/nn2e7UxxhpjNgSn+AxjY2OyrRFjY2ONVqgJ7+0W7+0eZfcwU+24hq01QjkeVN1VvUHXXdUbgndf8GpijGkGrgdeBqwHrjTGrJ9jv17gXcA9gRqWMTg4KNsaMTg42GiFmvDebvHe7lF2DzPVjmstSyzXMxFWjgdVd1Vv0HVX9Ybg3au5mjwb2Gqt3W6tTQE3ApfMsd9HgX8CEgH6zWB4eFi2NWJ4eLjRCjXhvd3ivd2j7B5mqh3XairCLlsjlONB1V3VG3TdVb0hePdqriYrgSfKnu8pbCthjDkDWG2t/VGAbgcwNDQk2xoxNDTUaIWa8N5u8d7uUXYPM9WOa1XTp81qjaiUOAeBcjyouqt6g667qjcE777kj9XGmCbgk8DfVrHv240xG40xG/fv308ikSAejzM1NUUymWRiYoJMJsPY2BjWWkZGRoBnsv+tW7fSZJpIpVJkMhkmJiZIJpNMTU0Rj8dJJBLEYjHS6TTRaJRcLkckEplxjOK/o6OjZLNZxsfHSaVSTE5OMj09zfT0NJOTk6RSKcbHx8lms4yOjs55jEgkQi6XIxqNkk6nicViFc9p+/btc57TyMgI1lrGxsZCeU67du1a9PsUhnMqfi32fWr0Oe3evTvw2HNxTtu3b3f6+xTkOW3btm3R75NnYaquCC9m1ohc/WeN8JUy96h6g667qjcE724Wqq4aY54H/J219sLC82sArLX/WHjeD2wDJgvfchgwClxsrd1Y6bgbNmywGzdWfLkiG/5jA4f2HMqPXl/X4rPH4/FUxBhzn7W2LjcFh5Var9kLcdYXz2Koa4hb3nDLAa89Hnmc4/79OG647AbeeMob+d8t/8vFN17Mxj/byJlHnBm4i8fj+eOl0nW7mo/V9wLHGmPWGWPagNcBNxdftNaOW2tXWGvXWmvXAnezQBJcK6Ojo7KtEcUqmBre2y3e2z3K7mGm2nEN2/RpyvGg6q7qDbruqt4QvPuCVxNrbQZ4J3ArsBn4trV2kzHmWmPMxYHaLEB/f7/srBH9/f2NVqgJ7+0W7+0eZfcwU+24hm3WCOV4UHVX9QZdd1VvCN69qquJtfYWa+1x1tqjrbUfK2z7sLX25jn2fWE9qsEAk5OTsrNGTE5OLrxTCPHebvHe7lF2DzPVjmvY5hFWjgdVd1Vv0HVX9Ybg3aVWluvs7JRtjejs7Gy0Qk14b7d4b/cou4eZasd1vtaIYkV4dmtEpQpyECjHg6q7qjfouqt6Q/DuUolwKpWSbY1IpVKNVqgJ7+0W7+0eZfcwU+24ztcaUZo+zWFrhHI8qLqreoOuu6o3BO8ulQg3NzfLtkY0N9evglFPvLdbvLd7lN3DTLXjupjWiOK/9UyEleNB1V3VG3TdVb0heHepRBiQbY3weDwez4GE7WY5j8dzcCF1Nclms7KtEdlsttEKNeG93eK93aPsHmaqHdewTZ+mHA+q7qreoOuu6g3Bu0slwm1tbbKtEW1tbY1WqAnv7Rbv7R5l9zBT7biGbdYI5XhQdVf1Bl13VW8I3l0qEZ6enpZtjVBdltV7u8V7u0fZPcxUO67Z3DyJcIXWiEr7B4FyPKi6q3qDrruqNwTvLpUI9/T0yLZG9PT0NFqhJry3W7y3e5Tdw0y14xq21gjleFB1V/UGXXdVbwjeXSoRHh8fl22NGB8fb7RCTXhvt3hv9yi7h5lqxzVr57lZbvasEbn6zxqhHA+q7qreoOuu6g3Bu0slwgMDA7KtEQMDA41WqAnv7Rbv7R5l9zBT7bjW0hpRz0RYOR5U3VW9Qddd1RuCd5dKhIeHh2VbI4aHhxutUBPe2y3e2z3K7mGm2nGtpjXC5c1yyvGg6q7qDbruqt4QvLtUIjw0NCTbGjE0NNRohZrw3m7x3u5Rdg8z1Y7rfK0RkE96XfYIK8eDqruqN+i6q3pD8O5SifDw8LBsa4Tqpy/v7Rbv7R5l9zBT7bjO1xoB+T5hl60RyvGg6q7qDbruqt7gK8KyrRGqn768t1u8t3uU3cNMUBXh5qbmA1oj5tt/qSjHg6q7qjfouqt6w0FeEY5EIrKtEZFIpNEKNeG93eK93aPsHmaqHdf5eoTBfWuEcjyouqt6g667qjcE7y6VCC9fvly2NWL58uWNVqgJ7+0W7+0eZfcwU+24LqY1olgZrmcirBwPqu6q3qDrruoNwbtLJcITExOyrRETExONVqgJ7+0W7+0eZfcwU824Wmux2EW3RtQzEVaOB1V3VW/QdVf1huDdpRLh7u5u2daI7u7uRivUhPd2i/d2j7J7mKlmXKtJbF3fLKccD6ruqt6g667qDcG7SyXCiURCtjUikUg0WqEmvLdbvLd7lN0rYYy5yBizxRiz1Rjz/gr7vNYY86gxZpMx5ptBO1QzrsVK73ytEa57hJXjQdVd1Rt03VW9IXj3lkCPVmdaW1tlWyNaW1sbrVAT3tst3ts9yu5zYYxpBq4HLgD2APcaY2621j5ats+xwDXAOdbaMWPMIUF7VDOuxUrvomeNmCdxXirK8aDqruoNuu6q3hC8u1RFOJfLybZG5HJ6zuC9XeO93aPsXoFnA1uttduttSngRuCSWfv8GXC9tXYMwFq7P2iJasa11tYIY0wAhhWchONB1V3VG3TdVb0heHepRNhaK9saoegM3ts13ts9yu4VWAk8UfZ8T2FbOccBxxljfm2MudsYc9FcBzLGvN0Ys9EYs3H//v0kEgni8ThTU1Mkk0kmJibIZDKMjY1hrWVkZATIT3hffG6tZWxsjEwmw8TEBMlkkqmpqfxxpqfyP8hCNBoll8uVpkYqTZpvIUeO0dFR0tk0TaaJVCrF5OQk09PTTE9PMzk5SSqVYnx8nGw2y+jo6IxjFP+NRCLkcjmi0SjpdJpYLHbAOcVisYrnBCx4TolEglgsRjqdrnhOxX9HR0fJZrOMj4/X9Zzme5/CcE6zj/XHcE5hf5/GxsZkz2lsbKym96kSplH/CWzYsMFu3LhxUd+TTCZ50/++iYeefojN79hcJ7P6kEwmaW9vb7TGovHebvHe7qnF3Rhzn7V2Q52UloQx5nLgImvt1YXnVwHPsda+s2yfHwJp4LXAKuAu4GRrbbTScRd7za5mXMemxxi4boBPXfgp/vq5fz3nPuv+dR3PX/N8/uuy/+KDt3+Q635zHen/L121x2I52GI5DKh6g667qjfU7l7pui1VEU4mk7KtEclkstEKNeG93eK93aPsXoG9wOqy56sK28rZA9xsrU1ba3cAjwHHBilRzbhW0/PbbGb2CNfzRjnQjgdVd1Vv0HVX9Ybg3aUS4a6uLtnWiK6urkYr1IT3dov3do+yewXuBY41xqwzxrQBrwNunrXPfwMvBDDGrCDfKrE9SIlqxrWaBTJmzxpR70RYOR5U3VW9Qddd1RuCd5dKhGOxmOysEbFYrNEKNeG93eK93aPsPhfW2gzwTuBWYDPwbWvtJmPMtcaYiwu73QpEjDGPAncC77HWBrpuaTXjWvWsEWU3y9VzxgjQjgdVd1Vv0HVX9Ybg3aWmT1u2bJlsa8SyZcsarVAT3tst3ts9yu6VsNbeAtwya9uHyx5b4G8KX3WhmnGtZh5h160RyvGg6q7qDbruqt4QvLtURTgSici2RhTv3FTDe7vFe7tH2T3MVDOuVU2fVlYRztps3RNh5XhQdVf1Bl13VW8I3l0qEV6xYoVsa8SKFSsarVAT3tst3ts9yu5hpppxraY1wnWPsHI8qLqreoOuu6o3BO8ulQgPDw/LtkaU5sQUw3u7xXu7R9k9zFQzrmFsjVCOB1V3VW/QdVf1huDdpRLhoaEh2daIoaGhRivUhPd2i/d2j7J7mKlmXBfbGuEiEVaOB1V3VW/QdVf1huDdpRLhkZERmtBsjSiupqKG93aL93aPsnuYqWZcw9gaoRwPqu6q3qDrruoNwbtLJcKDg4MYo9kaMTg42GiFmvDebvHe7lF2DzPVjGstrRHzJc1BoBwPqu6q3qDrruoNwbtLJcLRaBSDZmtENBpttEJNeG+3eG/3KLuHmWrGtbSy3CLmEa53RVg5HlTdVb1B113VG4J3l0qEe3t7ZWeN6O3tbbRCTXhvt3hv9yi7h5lqxrWY4M7bI1xWEXYxfZpyPKi6q3qDrruqNwTvLpUIx+Nx2daIeDzeaIWa8N5u8d7uUXYPM9WMazWtEa57hJXjQdVd1Rt03VW9IXh3qUS4vb1dtjWivb290Qo14b3d4r3do+weZqoZ11qWWK53IqwcD6ruqt6g667qDcG7SyXCmUxGtjUik8k0WqEmvLdbvLd7lN3DTDXjWtX0aY7nEVaOB1V3VW/QdVf1huDdpRJhY4xsa4QxptEKNeG93eK93aPsHmaqGddaWiPm2zcIlONB1V3VG3TdVb0heHepRLipqUm2NaKpSWqoS3hvt3hv9yi7h5lqxjWMrRHK8aDqruoNuu6q3hC8u9RIpNNp2daIdDrdaIWa8N5u8d7uUXYPM9WM62JbI7K5+s8aoRwPqu6q3qDrruoNwbtXdUUxxlxkjNlijNlqjHn/HK//hTHmYWPMA8aYXxlj1gdqWaCjo0O2NaKjo6PRCjXhvd3ivd2j7B5mqhnXalsjXFaEleNB1V3VG3TdVb0hePcFryjGmGbgeuBlwHrgyjkS3W9aa0+21p4GXAd8MlDLAlNTU7KtEVNTU41WqAnv7Rbv7R5l9zBTzbhW2xrhcvo05XhQdVf1Bl13VW8I3r2aK8qzga3W2u3W2hRwI3BJ+Q7W2omyp91Qn96Fvr4+2daIvr6+RivUhPd2i/d2j7J7mKlmXEsryy1iieV6J8LK8aDqruoNuu6q3hC8ezVXlJXAE2XP9xS2zcAY8w5jzDbyFeH/M9eBjDFvN8ZsNMZs3L9/P4lEgng8ztTUFMlkkomJCTKZDGNjY1hrGRkZAWB4eBiAHTt2AJDL5chkMkxMTJBMJpmamiIej5NIJIjFYqTTaaLRKLlcjkgkMuMYxX9HR0fJZrOMj4+TSqWYnJxkenqa6elpJicnSaVSjI+Pk81mGR0dnfMYkUiEXC5HNBolnU4Ti8UqntPu3bvnPKeRkRGstYyNjYXynPbu3bvo9ykM5zQ2NlbT+9Toc9q3b1/gsefinHbt2uX09ynIc9q5c+ei3yfPwoyNjS24TzHBnbdHeNbNcvNVj4OgGu+wouqu6g267qreELy7WajNwBhzOXCRtfbqwvOrgOdYa99ZYf/XAxdaa98833E3bNhgN27cuGjh99z2Hq6/93riH9RdFcXj8WhjjLnPWruh0R4uqfWaPR//84f/4dKbLuW+t9/HGYefMec+b/7vN/OLnb9g51/v5OXfeDmR6Qj3XH1PoB4ej+ePn0rX7WoqwnuB1WXPVxW2VeJG4NJF2VXJ8PCwbGtEscqkhvd2i/d2j7J7mKlmXKu5Wc51a4RyPKi6q3qDrruqNwTvXs0V5V7gWGPMOmNMG/A64ObyHYwxx5Y9fQXweHCKzzA0NCQ7a8TQ0FCjFWrCe7vFe7tH2T3MVDOuVU+fVmiNyNr6T5+mHA+q7qreoOuu6g3Buy94RbHWZoB3ArcCm4FvW2s3GWOuNcZcXNjtncaYTcaYB4C/AeZti6iV4eFh2VkjVD99eW+3eG/3KLuHmaoqwlXMGtFkmnxFuEpU3VW9Qddd1RuCd2+pZidr7S3ALbO2fbjs8bsCtarA0NCQbGuE6qcv7+0W7+0eZfcwU824VtUa4Xj6NOV4UHVX9QZdd1VvaEBFOEyMjo7KtkYU75RXw3u7xXu7R9k9zFQzrottjXCRCCvHg6q7qjfouqt6Q/DuUolwf3+/bGtEf39/oxVqwnu7xXu7R9k9zFQzrtUuqFHeGjFf9TgIlONB1V3VG3TdVb0heHepRHhyclK2NWJycrLRCjXhvd3ivd2j7B5mqhnXapdYdtkaoRwPqu6q3qDrruoNwbtLJcKdnZ0YYwDkqsKdnZ2NVqgJ7+0W7+0eZfcwU824llaWm68iXD5rRK7+s0Yox4Oqu6o36LqrekPw7lKJcCqVwlBIhMWqwqlUqtEKNeG93eK93aPsHmaqGddigrvgynIOZ41QjgdVd1Vv0HVX9Ybg3aUS4ebm5tJFUK0i3Nxc3762euG93eK93aPsHmaqGddqWyNc3iynHA+q7qreoOuu6g3Bu0slwkCpNUJx5giPx+PxPENVN8sZt9OneTyegwupK0o2m5Vtjchms41WqAnv7Rbv7R5l9zBTzbhWNX1aUzMWi7U2P2vEPElzECjHg6q7qjfouqt6Q/DuUolwW1ubbGtEW1tboxVqwnu7xXu7R9k9zFQzrtW2RhT3dVERVo4HVXdVb9B1V/WG4N2lEuHp6WnZ1ojp6elGK9SE93aL93aPsnuYqWZcq22NgPw1P2vrP2uEcjyouqt6g667qjcE7y6VCPf09Mi2RvT09DRaoSa8t1u8t3uU3cNMNeNabWsE5JNmFxVh5XhQdVf1Bl13VW8I3l0qER4fHy9dBNUqwuPj441WqAnv7Rbv7R5l9zBTzbhW0xpRfM1Va4RyPKi6q3qDrruqNwTvLpUIDwwMyCbCAwMDjVaoCe/tFu/tHmX3MFPNuFbTGlF+zXeRCCvHg6q7qjfouqt6Q/DuUonw8PAwLU0twDMXUBWGh4cbrVAT3tst3ts9yu5hpnxcn4w9yaU3Xsreib0z9imtLDdfRXhWa8R8+waBcjyouqt6g667qjcE7y6VCA8NDZUuiplcpsE2i2NoaKjRCjXhvd3ivd2j7B5mysf190/+nv/Z8j985OcfmbFPsTWieBP0XLhujVCOB1V3VW/QdVf1huDdpRLhGRVh6yvCLvDebvHe7lF2DzPl45rOpQH46gNfZcvIltL2bC67YIW3NH2ao5vllONB1V3VG3TdVb3BV4RLibCvCLvBe7vFe7tH2T3MlI9rOptPhLM2O6MqnLXZBRfIKL6eszmyufpPn6YcD6ruqt6g667qDQd5RTgSiZSqB2qJcCQSabRCTXhvt3hv9yi7h5nycS1WhF+z/jXctOkm7n/yfqC6JZNdt0Yox4Oqu6o36LqrekPw7lKJ8PLly2Vvllu+fHmjFWrCe7vFe7tH2T3MlI9rsSJ8zbnX0NrUyo2P3AhU1xrheh5h5XhQdVf1Bl13VW8I3l0qEZ6YmJC9WW5iYqLRCjXhvd3ivd2j7B5myse1WBFe0bWCnrYepjP5laGqaY1wPX2acjyouqt6g667qjcE7y6VCHd3d8veLNfd3d1ohZrw3m7x3u5Rdg8z5eNarAi3NrfS1txGKpsCamuNqPf0acrxoOqu6g267qreELy7VCKcSCRke4QTiUSjFWrCe7vFe7tH2T3MlI9rsSLc2tRKa3NrKREOY2uEcjyouqt6g667qjcE7y6VCLe2tsr2CLe2tjZaoSa8t1u8t3uU3cNM+bhWqggvpjUia7Nkbf1njVCOB1V3VW/QdVf1huDdpRLhXC4n2yOcy2ktCV3Ee7vFe7tH2T3MlI9reUW4rbmt9LyaVofi6656hJXjQdVd1Rt03VW9IXh3qUTYWivbI2ytbbRCTXhvt3hv9yi7h5nyca1YEa5iXmDXrRHK8aDqruoNuu6q3hC8u1Qi3NLSItsj3NLS0miFmvDebvHe7lF2DzPl41q8Xjeb5iW1RrhIhJXjQdVd1Rt03VW9IXh3qUQ4mUzKriyXTCYbrVAT3tst3ts9yu5hpnxc07k0rU2tGGNobWqdmQgvsjViocR5qSjHg6q7qjfouqt6Q/DuUolwV1eX7M1yXV1djVaoCe/tFu/tHmX3ShhjLjLGbDHGbDXGvH+e/V5tjLHGmA1BO5SPazqbprU5f4PLoqdPc9waoRwPqu6q3qDrruoNwbtLJcKxWEz2ZrlYLNZohZrw3m7x3u5Rdp8LY0wzcD3wMmA9cKUxZv0c+/UC7wLuqYdH+bgWK8KQT4SLPcPZ3MKtEa6XWFaOB1V3VW/QdVf1huDdpRLhZcuWyd4st2zZskYr1IT3dov3do+yewWeDWy11m631qaAG4FL5tjvo8A/AXWZULR8XCtVhKtpjSj1CDuqCCvHg6q7qjfouqt6Q/DuUolwJBKRvVkuEok0WqEmvLdbvLd7lN0rsBJ4ouz5nsK2EsaYM4DV1tofzXcgY8zbjTEbjTEb9+/fTyKRIB6PMzU1RTKZZGJigkwmw9jYGNZaRkZGABgeHiYSiTAyMoK1lsnpSVqbWpmYmKCZZhLp/HHSmTRYSKfTRKNRcrlc6f0YHh4GIDaRr/6Mjo8CkEqmSKVSTE5OMj09zfT0NJOTk6RSKcbHx8lms4yOjs44RvHfSCRCLpcjGo2STqeJxWIHnNPu3bsrnhNQOqexsTEymQwTExMkk0mmpqaIx+MkEglisdi851T8d3R0lGw2y/j4eCDn9PTTT895TvO9T2E4p23bti36fQrLOe3Zsyew2HN5Tjt27Ag09lye044dO2qKvUqYRk2hsWHDBrtx48ZFf9+DTz3IaV84je+/9vtcduJldTDzeDye+THG3GetDbyvNgiMMZcDF1lrry48vwp4jrX2nYXnTcAdwFustTuNMT8H3m2tnfeCXOs1G+Ct//NW7thxB7v+ehdXfPcKHnzqQf7wzj9w6Y2XsiO6gwf/4sGK3/uLnb/ghV97Ibe+8VYu/PqFfPRFH+VDL/hQTR4ej+fgpdJ1W6oiPDw8LNsjXPzEoob3dov3do+yewX2AqvLnq8qbCvSC5wE/NwYsxN4LnBz0DfMlY9rOjurR7iwoMZiWiOKfcX1bo1QjgdVd1Vv0HVX9Ybg3aUS4aGhIdke4aGhoUYr1IT3dov3do+yewXuBY41xqwzxrQBrwNuLr5orR231q6w1q611q4F7gYuXqgivFjKxzWdK+sRbpo5a8SCN8vNKn4slDgvFeV4UHVX9QZdd1VvCN5dKhEeGRmR7REu9sWo4b3d4r3do+w+F9baDPBO4FZgM/Bta+0mY8y1xpiLXXmUj+vsivCiVpYrXPOLVeR6V4SV40HVXdUbdN1VvSF4d6mlRQYHB4lF8zdOqCXCg4ODjVaoCe/tFu/tHmX3SlhrbwFumbXtwxX2fWE9HMrHtbwi3Nq8yAU1ChVhV60RyvGg6q7qDbruqt4QvLtURTgajc6YXF2JaDTaaIWa8N5u8d7uUXYPM+Xjms6mS21tsyvC1S6xXPyeeifCyvGg6q7qDbruqt4QvLtUItzb2yu7xHJvb2+jFWrCe7vFe7tH2T3MlI9rpQU1qlpZblY7XL0TYeV4UHVX9QZdd1VvCN5dKhGOx+OyN8vF4/FGK9SE93aL93aPsnuYKR/X2QtqpHNprLWLa41w1COsHA+q7qreoOuu6g3Bu0slwu3t7bI3y7W3tzdaoSa8t1u8t3uU3cNM+bjOrggXty2mNaJYRV5o/6WiHA+q7qreoOuu6g3Bu1eVCBtjLjLGbDHGbDXGvH+O1//GGPOoMeYhY8ztxpgjA7UskMlknqkIi/UIZzJaiXsR7+0W7+0eZfcwUz6u5RXhYkKcyqZC2RqhHA+q7qreoOuu6g3Buy94RTHGNAPXAy8D1gNXGmPWz9rtfmCDtfYU4LvAdYFaPuMiu6CGMabRCjXhvd3ivd2j7B5mysd1ropwKpsKZWuEcjyouqt6g667qjcE717NFeXZwFZr7XZrbQq4EbikfAdr7Z3W2mLTxt3kVzIKnKamJtke4aYmqS6UEt7bLd7bPcruYaZ8XGf3CBe31dIaUe9EWDkeVN1VvUHXXdUbgnev5mgrgSfKnu8pbKvEnwI/nusFY8zbjTEbjTEb9+/fTyKRIB6PMzU1RTKZZGJigkwmw9jYGNba0qTJxeX09u/fT1NBOZVJMTExQTKZZGpqing8TiKRIBaLkU6niUaj5HI5IpHIjGMU/x0dHSWbzTI+Pk4qlWJycpLp6Wmmp6eZnJwklUoxPj5ONptldHR0zmNEIhFyuRzRaJR0Ok0sFqt4TpFIZM5zGhkZwVrL2NgYmUwmdOcUjUYX/T6F4ZzS6XRN71Ojz6m4LcjYc3FOIyMjTn+fgjyn2R7VvE+ehUmn0888rlARztncwhVhxwtqlHuroequ6g267qreELy7sdbOv4MxlwMXWWuvLjy/CniOtfadc+z7RvIrGp1nrU3Od9wNGzbYjRsXt6JnOp2muaWZ5mub+bvz/o6PvPAji/r+RpJOp2ltbW20xqLx3m7x3u6pxd0Yc5+1dkOdlELJYq/Z5eO69tNrOW/teXzt0q9xw4M38Kb/fhNb/2orl950KccOHMv3r/h+xePsmdjD6k+t5gPnfoCP/+rj/Ocl/8lbTnvLUk+nKm81VN1VvUHXXdUbanevdN2u5qP1XmB12fNVhW2zf8BLgA+SX7N+3iS4VqampmgyTbQ1txFPa039MTU11WiFmvDebvHe7lF2DzPl41peES62SKSyqapaI2ZXhBeqIC8V5XhQdVf1Bl13VW8I3r2aRPhe4FhjzDpjTBvwOuDm8h2MMacDXyCfBO8P1LCMvr4+AJZ3LCeaiNbrx9SForsa3tst3ts9yu5hpnxc09kK06dVcbOc6x5h5XhQdVf1Bl13VW8I3n3BK4q1NkO+3eFWYDPwbWvtJmPMtcaYiwu7fQLoAb5jjHnAGHNzhcMtibGxMQCWdy5nLDFWjx9RN4ruanhvt3hv9yi7h5nycU3nDrxZrurp05rcTp+mHA+q7qreoOuu6g3Bu7dUs5O19hbgllnbPlz2+CWBWlVgcHAQyFeER6dHXfzIwCi6q+G93eK93aPsHmbKx3WuinCtrRH1ToSV40HVXdUbdN1VvSF4d6n5M4p3cytWhIvuanhvt3hv9yi7h5nyca1UEV5Ma0Qqm5rxvF4ox4Oqu6o36LqrekPw7lKJ8NDQEJCvCI9NayXCRXc1vLdbvLd7lN3DTPm4lleEF72ynOPWCOV4UHVX9QZdd1VvCN5dKhEuVYQ7fEXYFd7bLd7bPcruYaY4rtlcFoutvKBGyOYRVo4HVXdVb9B1V/UGXxEG4PDew4kmokyldKb/UP305b3d4r3do+weZorjWkxgKy6xvFCPcHGJ5cKsEQvtv1SU40HVXdUbdN1VveEgrwgXV6Q6ZuAYALaNbWukzqIouqvhvd3ivd2j7B5miuNaTGArzRpR9fRpjirCyvGg6q7qDbruqt4QvLtUItzf3w88kwg/Hnm8kTqLouiuhvd2i/d2j7J7mCmO6+yK8OwFNRbsETYzK8L1ToSV40HVXdUbdN1VvSF4d6lEeHJyEoAj+48E8ktvqlB0V8N7u8V7u0fZPcwUx3W+inA1rRHGGAzGWUVYOR5U3VW9Qddd1RuCd5dKhDs7OwHoaOkAnplOR4Giuxre2y3e2z3K7mGmOK6VeoTTuXRVrRGQT35dVYSV40HVXdUbdN1VvSF4d6lEOJXKJ77lFQUViu5qeG+3eG/3KLuHmeK4zlsRrqI1AvI3yLmaPk05HlTdVb1B113VG4J3l0qEm5vzlYOWpvyCeEqJcNFdDe/tFu/tHmX3MFMc16XOGgH5PuHicaqpIC8F5XhQdVf1Bl13VW8I3l0qES5ijKG9uV0qEfZ4PJ6DkdkV4fIFNaqZRxjctkZ4PJ6DC6krSjabLT1ua24jmU020GZxlLsr4b3d4r3do+weZorjWmnWiHQ2XdXKcpBvjXB1s5xyPKi6q3qDrruqNwTvLpUIt7W1PfO4uU2qIlzuroT3dov3do+ye5gpjuvsinCTaaKlqYVkNonFVt8a4agirBwPqu6q3qDrruoNwbtLJcLT09Olx2qJcLm7Et7bLd7bPcruYaY4rrMrwpC/fk+n869X0xrhsiKsHA+q7qreoOuu6g3Bu0slwj09PaXHaolwubsS3tst3ts9yu5hpjiuxdkeihVhyF+/E5kEUN2SyS57hJXjQdVd1Rt03VW9IXh3qUR4fHy89FgtES53V8J7u8V7u0fZPcwUx7XUGlFWEW5taiWRzSfCVfUIm2emT6smcV4KyvGg6q7qDbruqt4QvLtUIjwwMFB6rJYIl7sr4b3d4r3do+weZorjWmqNaNZojVCOB1V3VW/QdVf1huDdpRLh4eHh0mO1RLjcXQnv7Rbv7R5l9zBTHNe5KsJhbo1QjgdVd1Vv0HVX9Ybg3aUS4aGhodJjtenTyt2V8N5u8d7uUXYPM8VxrVgRzuQrwtW2RriqCCvHg6q7qjfouqt6Q/DuUolw+aeA9hatBTVUP315b7d4b/cou4eZhSrCi26N8BXhBVF1V/UGXXdVb/AV4dJjtdYI1U9f3tst3ts9yu5hZnZFuKWppfRaa3ProlojfEW4OlTdVb1B113VGw7yinAkEik9VkuEy92V8N5u8d7uUXYPM8Vxnb2gBszsEa4msS3fp96JsHI8qLqreoOuu6o3BO8ulQgvX7689FgtES53V8J7u8V7u0fZPcwUx7XighqZxbVGlB5Xsf9SUI4HVXdVb9B1V/WG4N2lEuGJiYnSY7VEuNxdCe/tFu/tHmX3MFMc10oV4VKPcJWtEUXqXRFWjgdVd1Vv0HVX9Ybg3aUS4e7u7tJjtUS43F0J7+0W7+0eZfcwUxzXShXhUo9wFRVel60RyvGg6q7qDbruqt4QvLtUIpxIJEqP25raSGaSjMRHiMTD3+tS7q6E93aL93aPsnuYKY7rXBXh1qbWRfUIl1eN650IK8eDqruqN+i6q3pD8O4tC+8SHlpbn7mQdrV2EU/HGfpE/u5B+xHbKK2qKHdXwnu7xXu7R9k9zBTHdcEe4ZC1RijHg6q7qjfouqt6Q/DuUhXhXC5Xetzd1s1karKBNouj3F0J7+0W7+0eZfcwUxzXSj3COZt/PWytEcrxoOqu6g267qreELy7VCJs7TNV3+7W7lKlQYFydyW8t1u8t3uU3cNMcVzTuTRNpmlGAtvW3FZ6vNjWiGoqyEtBOR5U3VW9Qddd1RuCd5dKhFtanunk6GnraaDJ4il3V8J7u8V7u0fZPcwUxzWdTc9oi4CZbRJha41QjgdVd1Vv0HVX9Ybg3aUS4WQyWXrc3aZ1x2O5uxLe2y3e2z3K7mGmOK7pXHpGWwTMrAgvdh7heifCyvGg6q7qDbruqt4QvLtUItzV1VV63N2qlQiXuyvhvd3ivd2j7B5miuM6V0V4sa0RLnuEleNB1V3VG3TdVb0heHepRDgWi5Ueq1WEy92V8N5u8d7uUXYPM8VxXbAiHLLWCOV4UHVX9QZdd1VvCN5dKhFetmxZ6fHsHuHinclhpdxdCe/tFu/tHmX3MFMc14UqwmFrjVCOB1V3VW/QdVf1huDdpRLhSOSZhTNmt0YU56QMK+XuSnhvt3hv9yi7h5niuM5VES5/Xk1FuDz5rSZxXgrK8aDqruoNuu6q3hC8u1QivGLFitLj2a0R8XTctc6iKHdXwnu7xXu7R9k9zBTHNZ1beo+wy9YI5XhQdVf1Bl13VW8I3l0qER4eHi49nl0RnkpNudZZFOXuSnhvt3hv9yi7h5niuKazWrNGKMeDqruqN+i6q3pD8O5SifDQ0FDp8ewe4bBXhMvdlfDebvHe7lF2r4Qx5iJjzBZjzFZjzPvneP1vjDGPGmMeMsbcbow5MmiH4rguVBEO281yyvGg6q7qDbruqt4QvLtUIjwyMlJ6PLs1Ymd0p2ObxVHuroT3dov3do+y+1wYY5qB64GXAeuBK40x62ftdj+wwVp7CvBd4LqgPYrjulBFOGzTpynHg6q7qjfouqt6Q/DuUonw4OBg6XFX68x55H6+8+eObRZHubsS3tst3ts9yu4VeDaw1Vq73VqbAm4ELinfwVp7p7W2+Ge0u4FVQUsUx3WuivCMleVC1hqhHA+q7qreoOuu6g3Bu1d1Raniz2wvMMb83hiTMcZcHqhhGdFotPR49sVwe3Q7v9j5C97143fV68cviXJ3Jby3W7y3e5TdK7ASeKLs+Z7Ctkr8KfDjuV4wxrzdGLPRGLNx//79JBIJ4vE4U1NTJJNJJiYmyGQyjI2NYa0tVWqGh4eJRqOMjIyQzqYxOUMmk2FiYoJkMkkukyv9jMR0gnQ6TTQaJZfLle4IL/YBDg8Pz0iWJyYmSKVSTE5OMj09zfT0NJOTk6RSKcbHx8lms4yOjh5wDMjfbZ7L5YhGo6TTaWKx2AHntHfv3ornBPlqlLWWsbGxGec0NTVFPB4nkUgQi8UWPCeA0dFRstks4+PjgZzTyMjInOc03/sUhnPasWPHot+nsJzTvn37Aos9l+e0e/fuQGPP5Tnt2rWrptirhLHWVnwRSn9mewy4gPwF9V7gSmvto2X7rAX6gHcDN1trvzvvQYENGzbYjRs3LrTbDDKZzIw1ps3fm9LjC4++kFu33QpA9sPZulcNFstsdxW8t1u8t3tqcTfG3Get3VAnpSVRKEZcZK29uvD8KuA51tp3zrHvG4F3AudZa+ddt3Sx1+ziuJ7zlXPobOnkZ2/6Wem17z36PS7/Tr5mct/b7+OMw8+Y91hv+e+38LUHv0azaSbz4UzVDrVwsMVyGFD1Bl13VW+o3b3SdbuabLGaP7PttNY+BOTmOkBQxOOVb4ibSj8za8RkqnLm3yjmcw8z3tst3ts9yu4V2AusLnu+qrBtBsaYlwAfBC5eKAmuheK4BjJrRGEfFwUO5XhQdVf1Bl13VW8I3r2aq8pi/8xWN9rb2+fc3tHSQTwdL10kJ5ITLrWqopJ72PHebvHe7lF2r8C9wLHGmHXGmDbgdcDN5TsYY04HvkA+Cd5fD4niuAYya0STu0RYOR5U3VW9Qddd1RuCd3faP7CUfjOA/fv3z+glKbJ+cD1TyanSxTUyGXHem7VQf0wkEgllb9ZC5zQ+Ph7a3qz5zimTyTS8j6mWcypuC2tvVqVzGhkZke03m32Mat6nMGOtzZBvd7gV2Ax821q7yRhzrTHm4sJunwB6gO8YYx4wxtxc4XA1U7xGz1URnrGyXBUV4WIC7CIRLv+/RQ1Vd1Vv0HVX9Ybg3avpEX4e8HfW2gsLz68BsNb+4xz7fhX4Yb16hOPxOF1dz8wWUewRfuMpb+SuXXcxnhhnPDnO3X96N89Z9ZxFHbvezHZXwXu7xXu7pxb3MPcI14vFXrOL43r8vx/P6Yedzo2X31h67Ve7f8Xz//P5APzhHX/g+BXHz3usd/zoHXx242fpbu1m8gP1bX072GI5DKh6g667qjfU7r6UHuEF/8zmiqamuXX72vqIp+O0t+TL5WFsjajkHna8t1u8t3uU3cNMcVwX7BEOWWuEcjyouqt6g667qjcE777g0ar5M5sx5ixjzB7gNcAXjDGbArUskE6nZzx//K8e5/4/v5+u1i5G4iPsn8q3uoUxEZ7troL3dov3do+ye5gpjuuCPcKLuFmumqR5qSjHg6q7qjfouqt6Q/DuVc0/Ya29Bbhl1rYPlz2+lzpMyD6bjo6OGc+PGTgGgB9s/sGM7WFMhGe7q+C93eK93aPsHmaK45rOzr+gxmJWlnNREVaOB1V3VW/QdVf1huDdpWrjU1NTc26fvcrceHLchc6iqOQedry3W7y3e5Tdw0xxXNM5rdYI5XhQdVf1Bl13VW8I3l0qEe7r65tze3db94znw1PDpcfT6Wnuf/L+unpVQyX3sOO93eK93aPsHmaK4zpXRTjM8wgrx4Oqu6o36LqrekPw7lKJ8NjY2JzbZ1eEn556uvT4qh9cxRn/cQbRRLSeagtSyT3seG+3eG/3KLuHmeK4ZnKZeSvCYWuNUI4HVXdVb9B1V/WG4N2lEuHBwcE5tw90Dsx4Xp4I/3T7T4H8anMLTRVXTyq5hx3v7Rbv7R5l9zBTHNd0Lk1L08zbUcLcGqEcD6ruqt6g667qDcG7SyXCxYnuZ3NI9yEznj89+UwiPJXK95Ks/tRq/uGuf6if3AJUcg873tst3ts9yu5hZnh4GGttviI8+2a5RS6oUZo1oop9l4pyPKi6q3qDrruqNwTvLpUIDw0Nzbn9gES4rCKctdnS4+vvvb4+YlVQyT3seG+3eG/3KLuHmaGhITK5/ApQSjfLKceDqruqN+i6q3pD8O5SifBiKsJztUGkc42bN0/105f3dov3do+ye5gZHh4uXXOVpk9TjgdVd1Vv0HVX9QZfEZ5ze29b74znyWxyzrmEU9lUXbyqQfXTl/d2i/d2j7J7mBkaGiKdLSTCsyrCzU3Ni2p3cDlrhHI8qLqreoOuu6o3HOQV4dHR0Tm3G2N47bNeO2NbeXtEkeJFuRFUcg873tst3ts9yu5hZnR0tGJFGJ5pjwhba4RyPKi6q3qDrruqNwTvXtXKcmGhv7+/4ms3XX4Txw8eT0dLBx+844M8Pfk0xw0eN2OfRlaE53MPM97bLd7bPcruYaa/v5/98fyy97MrwsVt05np0LVGKMeDqruqN+i6q3pD8O5SFeHJycl5X7/2RdfyyuNeCcBTk08d0Cdsadz0aQu5hxXv7Rbv7R5l9zAzOTlZXUU4ZK0RyvGg6q7qDbruqt4QvLtUItzZ2bngPkcvP5pm08zD+x8mno7Puc/u8d38xQ//gmQmGbRiRapxDyPe2y3e2z3K7mGms7OzYo8w5BNhg8EYs+Cxiq0R1bRRLBXleFB1V/UGXXdVbwjeXSoRTqUWbm3obuvmlENP4bd7fkssFTvgdWst7/vZ+/jCfV/g25u+XQ/NOanGPYx4b7d4b/cou4eZVCq1YEW42gqvy9YI5XhQdVf1Bl13VW8I3l0qEW5urq4acPyK49kV3UUseWAiHE/H6WvLr1P9pv9+U2nBjXpTrXvY8N5u8d7uUXYPM83NzQtWhKut8LpsjVCOB1V3VW/QdVf1huDdpRLhaulv72c8Oc7HfvmxA14bnR5lRdeK0vPd47tdqnk8Hs9Bw3wV4dam1qpXinM5a4TH4zm4kLqqZLPZhXeikAgnxvnag1874LWxxNiMhTX2TOwJzG8+qnUPG97bLd7bPcruYSabzUpWhJXjQdVd1Rt03VW9IXh3qUS4ra1t4Z2A/o5+ktm5b4Qbmx6b0TLhKhGu1j1seG+3eG/3KLuHmba2NskeYeV4UHVX9QZdd1VvCN5dKhGenp6uar/+9spzzI1OjxJLxVjZuxKA7WPbA3FbiGrdw4b3dov3do+ye5iZnp5euCK8yNaIavdfCsrxoOqu6g267qreELy7VCLc09NT1X79HQcmwmcefiaQb42IpWIMdg1y7ppz+dYj3zpgvuF6UK172PDebvHe7lF2DzM9PT0LVoTD2BqhHA+q7qreoOuu6g3Bu0slwuPj41Xt19vWW3r86Qs/zch7Rrj1jbcC+daIydQkvW29XH7i5Wwb28b+qf118S2nWvew4b3d4r3do+weZsbHx+etCLc2t4ayNUI5HlTdVb1B113VG4J3l0qEBwYGqtqvfCnl3vZeBrsGGegcoNk0MxIf4cGnHqSnrYdnHfIsADYNb6qLbznVui+WTC7DZKp+K8TUy7veeG+3qHqDtnuYGRgYWLgiHMJZI5TjQdVd1Rt03VW9IXh3qUR4eHi4qv0uPv7i0uOu1i4AjDEs61jGTZtuIjId4dCeQ3nWUD4Rfvjph4OXnUW17ovlTT94E73/2Fu39o56edcb7+0WVW/Qdg8zw8PDkrNGKMeDqruqN+i6q3pD8O5SifDQ0FBV+7W3tPOGk98AzKwOD3QOsCO6A4DrXnIdh/Ucxsreldy99+7gZWdRrfti+dYj3wLyNwHWg3p51xvv7RZVb9B2DzNDQ0OBzRrhsiKsHA+q7qreoOuu6g3Bu0slwov5FLCqbxUw8wK8vHM5AH3tfRzSfQjGGM5dcy537bqLnM0FKzuLen/6qtfsF6qfGr23W1S9Qds9zCxUEb7w6At59YmvrupYxQS42gryUlCOB1V3VW/QdVf1Bl8Rrnrfj5z3ET594ad57bNeW9o20JnvKzl6+dEYYwB45XGvZF9sH/fsuYdMLkMmlwlWukA9Pn09Mf5E6fG2sW2BHx90PzV6b7eoeoO2e5hZqCL8plPfxCcv/GRVx3LZGqEcD6ruqt6g667qDQd5RTgSiVS9b2drJ+967rtmVBAO6zkMgKMHji5tu/j4i2lvbuemTTdx+L8czgu/+sLAfMtZjHs13LbtNtZ8ek3p+ZXfu5Iz/+PMQH8GBO/tCu/tFlVv0HYPM5FIZN6K8GJw2RqhHA+q7qreoOuu6g3Bu0slwsuXL1/S9x+9PJ8AH9p9aGlbX3sfFxx9Af96z78yEh/h10/8ekk/oxJLdZ/Nx3/58dLjy9dfDsDvn/x9oD8Dgvd2hfd2i6o3aLuHmeXLl89bEV4MLqdPU44HVXdVb9B1V/WG4N2lEuGJiYklfX9nSyfAATMsnHroqTOeRxPRA7738cjjjCdqn7tuqe4HHC+ZP95Pr/opZ686u7Q96NkjgvZ2hfd2i6o3aLuHmYmJieAqwg5bI5TjQdVd1Rt03VW9IXh3qUS4u7t7Sd9/yQmXAPC2vCjavwAAGWxJREFU0982Y/vqvtUznv/zb/6ZSPyZ0vtPtv6E4/79OF75rVfW/LOX6j6bXeO7+MsNf8lLjnoJxw0eV9r+vc3f4+GnHw5sFomgvV3hvd2i6g3a7mGmu7s7sIqwy9YI5XhQdVf1Bl13VW8I3l0qEU4kEkv6/mMGjsF+xHLmETN7aYsLaxT52C8/xhXfvQLIV4IvuTGfQP9q96845BOHMJ2e5tatt5LNZZ25Azyy/xE27ttIJpdhdHqUoa58w/jLj305Fxx1AQCv+c5rOOXzp3DWF89a8s+DYLwbgfd2i6o3aLuHmUQiEVhF2GVrhHI8qLqreoOuu6o3BO8ulQi3ti7tYlqJc9ecy+N/9Ti5D+c48/B8knz7jttZ+cmVHPfvx5HKpvjVW38FwHB8mFM/fyoXfeMiPnjHB3ks8hgj8ZEZx5urPWGp7mPTY5z8uZM564tn8dsnfgvAUHc+ETbG8LHzPzZj/+1j29k9vntJPxPqN+b1xnu7RdUbtN3DTGtra6kiXO0KcpUofv9Sj1MNyvGg6q7qDbruqt4QvLtUIpzL1W+u32MGjsEYwz1X38OTf/skAPti+0qvn7PmHCLvjfDW097K46OPA/BPv/4njv/34znlc6fwph+8iQ/d8SE+c89naLq2CfP3hlsev4V4Oh6I++aRzaXHL/jqCwA4pPuQ0razVp5F5L0RfvnWX/JvF/0bAN/Z9B32TuwlZ3Pct+++GYuLVEs9x7yeeG+3qHqDtnuYyeVypLNpWptaS9NV1orL1gjleFB1V/UGXXdVbwjevSXQo9WZei0jXE5zUzOH9RzG5nds5sTrT2Soa4gPveBDQH4e4q9c8hV+8IcfEE1E6WvvYyI5wZOTT3LDQzcccKxXfPMVrFu2jhetfRH7J/dz2uGnceXJV7J+aH1pn6cnn+YPI3/g+Uc+H4Mhno7T3XZg/8u20QPnCS62RhQZ6Bzg3DXn8txVz+VffvsvvPun7+bdP303J644sZRI/+j1P+JZQ89iTX9+6rW5/oPaF9vHEb1HAHOP+T177mF1/+rSPmHERazUA+/tHmX3MGOtJZ1LL7ktAtzeLKccD6ruqt6g667qDcG7SyXCLS3udE9YcQJb/2or65avO+Diu+NdO4in4xzafSi377idy266jLbmNjpbOvnKJV/hoacf4v6n7qerpYsbHrqBrzzwFQB+uPWH/MMv/4HjBo/jschjM4752me9lhWdK/jsxs9y3OBxbDhiA998+JucdcRZnHXEWTw++jgGw9QHpjj2M8eyN7aXtcvWzune0tTC3VffzeH/cjgws5r8im++Ysa+fe19rOpbxQVHXcC/vPRf+Ld7/o2/ue1v+OiLPsrrTnodT4w9wYqeFeyM7uQlR72En23/GRffeDEAn3vF51i7bC2Hdh+KMYYHn3qQ15/8+gP+47vhwRs4bvA4JpITPHvls+lt750xptbaUkJ+7957aW9pJ5VNseGIDfO+R8lMEoulo6WDn2z9CRPJCV52zMvobe91GitB4r3do+weZlpaWkoV4aXiskdYOR5U3VW9Qddd1RuCdzeN+lSwYcMGu3HjxkV9z8TEBH19fXUyqp2czWEwc1ZXI/EIsVSMX2//NUeuOJK7dt3Fx375sVLLxCXHX0Iqm+LOnXeSyOQbwDtaOkqPy7ngqAu47arbeGryKeLpOEctP2perz0Te3h68mlu2nQTPW09tDe3k86lufGRG9kZ3clUeoom0xTo8tI9bT10tXZx+mGn09rcyvKO5QdUy1uaWljRtYJDug9hRdcK7thxBwCnHXYaDzz1wIx91y1bx67xXVx0zEWcs/ocptPTvPioF/ObJ37DJ37zCSZTk5x22Gls3PdMLL3n7PfwwL4HWNGzgueteh6nHXYamVyGPRN7uODoC+hv7+cnW39CJpdhMjXJm097M5F4hKHuIXI2RyQeYfPIZtb0r2FfbB8bjthAW3MbkL9hsb+9n1V9q0rv9/DUMMs6lpU+AORsblH/YSczSVLZFFtHt7Kuax2plhQ7xnZwSPchHNF7BO0t7TP2z+Qy/P7J33PWEWct+U/OQRHW381qqMXdGHOftXb+T2p/ZCz2mj0xMcH7f/l+vvPodxh+z9KWRH3o6Yc49fOnctUpV/Ffl/3Xko61EAdbLIcBVW/QdVf1htrdK123pRLhTCYj+ymm3D2RSbBnYg9DXUP0d/QDMJ4Y5ydbf8LZq89mVd8q7n/qflqaWtgysoW25jayNst5R57HYNdgoF7WWkanR/nkbz/JHyJ/4AVrXsAFR1/Ag089yOj0KP3t/fzv4//LU5NPsWVkC2cecSbvPfu9/Gr3r2hvaefGR25kRdcKXn3iq0lmk9yx4w4i0xE2D2+mtbmVpyefJmuzDHQO8I6z3sGn7/40PW09HNF7BDuiOxhPjJO1z8y+UaxQPzr8KK849hWkc2nuf/J+ptJTpQ8Pc7Gmfw0re1fy2z2/XfQYFD8MNJkm2prbDvgQ0tbcxsrelTQ3NbN1dCuQ7yk/pPsQmkwTv33it2RtllV9q+hv72fzyGbOO/I8utu66W3r5bjB44glY2we2cyeiT3sn9rPmUecSXtzOz/4ww8O8GlrbpvRz/2clc+hv6Of27bdxkmHnMQj+x8B4PUnvx6D4YKjLiAyHaGrtYvOlk52RHewvGM5T00+xfbodp59xLPZEd1BzubI5rK0NbexrGMZh/UcRiqbosk0ccbhZ9Dd1k00EWV0epT25nb6O/ppaWrhyP4jeWLiCVqbWjmi9wgeH3289BeQdC5NV2sXXc1dDHYP0tnayWfv/SwvPfqljMRHOOPwM9gzsYeOlg762/tJZBKMJ8c5duBYAOLpOFPpKTK5DEf0HsHO6E427d/EeWvPo6etB5j5waJ4DrX+uT2VTfGbJ37D2mVrS39RqeW64hPhhclkMvzlLX/Jjx7/Efv+dt/C3zAPm/Zv4qTPncSbT30zX730q0s61kL8sfw/o4SqN+i6q3pD7e5/FInw2NiY7Gooqu5L9Y4monS0dNDe3I4xhmwuO2PZ63Q2TTQRJZaKsXl4M+evO5/O1s4DjpOzObaMbKG1uZU7d9zJMQPHcN7a89g9vptsLsua/jVYLOOJcbrburlzy5287FkvY8/EHr7+0NeB/BLbO8Z2EEvFOOXQU4gmojwZe5L7n7qf23fcziuOfQV97X1MpadY2bsSay1rl63lhodu4KRDTiKdSzPQMUAsFePh/Q+TzqZJZVNMpiZ55XGvZM/EHqKJKKceeio/2fYTcjZ/s1BkOkJHSwcre1eSzqXZPb6b1qZn7qg/ZuAYBjoHOHvV2fx61695zurncPTA0Tz49IPc+MiN9Lb1Ek1ES/vXQktTC5lcpubvrzetTa2csOIEHt7/MACDnYMMdQ9hMDw++jhDXUM0NzUTiUeYzkzT3drNaYedRiKTYFnHMg7vPZyfbf8Z2VwWi+XMw89kdHqUydQk+2L7WLd8HWuXreV3e3834ybYlxz1Er50wZc48rAjF+XrE+GFGRsb45GJR9g9vps3nPKGJf3szcObWf/Z9bzttLfx5Uu+vKRjLYTqtRp03VW9Qddd1Rtqd/+jSITLe0nVUHX33ksjmUkynhxnoHOAlqZnPsEWE+ietp5S2wVU9rbWcufOOzl79dm0N+dbJSLTER586kE6Wjrobc8ny12tXfS29TKRnGCwa5Aj+4/kgace4IQVJzCdmaanrYeczTE2PUYsFePJ2JMMdg1y7957aTJNrOxbyaHdh5LKpngs8hhZm2XvxF6aTBNPTDzBzuhO3n7m24nEI2RyGfo7+plITpQq5fF0nJ3RnaRzaTK5DMcOHMvJh5xMKptiX2wfo9OjfOn+L3HVKVexdtlaYskYXa1d7I3tZUd0B6867lUcP3g8X77/y+yL7WOgM//B4/Cew8naLGv61hBPx9kR3UFkOsKTsSdpb2lnJD7CWUecxZHLjuTOHXdijKGvvY9UNkUsGeOYgWPYF9vHiq4VnHzIyWwe2Uwik+C+J+/ji6/6IlefcfWi3lefCC9MkL+Dj0Ue4/h/P56rT7+aL178xUCOWYmwXDtqQdVd1Rt03VW9oXb3Stdtqbp4JBJhxYoVjdaoCVV377002lvaOaTlkAO2tzW3MdA5cMD2St7GGM5fd/6MbSu6VvDio168oENxAZny2Ui6WruA/E2hAKccesoB33fWyuoXZRkZGal6vKtJZF51/Kuq/tkw/4VxvtceizzGgD3wffAsnSB/B13OGhGWa0ctqLqreoOuu6o3BO8ulQirvmmg6+693eK9a2O+6sB8r5UvT+4JliBjwuU8wo2O5aWg6q7qDbruqt4QvLvUghrDw0u787iRqLp7b7d4b/cou4eZIMfV5fRpyvGg6q7qDbruqt4QvHtVVxVjzEXGmC3GmK3GmPfP8Xq7Meamwuv3GGPWBmpZYGhoaOGdQoqqu/d2i/d2j7J7mAlyXF22RijHg6q7qjfouqt6Q/DuC15VjDHNwPXAy4D1wJXGmPWzdvtTYMxaewzwKeCfArUsMDIyUo/DOkHV3Xu7xXu7R9k9zAQ5rsXWiPIZZ+qFcjyouqt6g667qjcE717Nx+tnA1uttduttSngRuCSWftcAnyt8Pi7wItNHW5HHBwMdg5dl6i6e2+3eG/3KLuHmSDH1WVrhHI8qLqreoOuu6o3BO9ezVVlJfBE2fM9hW1z7mOtzQDjwAGmxpi3G2M2GmM27t+/n0QiQTweZ2pqimQyycTEBJlMhrGxMay1pay/2A+yc+dOrLWMjY2RyWSYmJggmUwyNTVFPB4nkUgQi8VIp9NEo1FyuRyRSGTGMYr/jo6Oks1mGR8fJ5VKMTk5yfT0NNPT00xOTpJKpRgfHyebzTI6OjrnMSKRCLlcjmg0SjqdJhaLVTyn3bt3z3lOIyMjoT6nffv2Lfp9CsM5RaPRmt6nRp/Tvn37Ao89F+e0e/dup79PQZ7Trl27Fv0+eRYmGo0GdiyXrRFBertG1V3VG3TdVb0hePcF5xE2xlwOXGStvbrw/CrgOdbad5bt80hhnz2F59sK+1SsXx/MK8sp4b3d4r3d41eWq45aVpYLKiaiiSjL/2k57zn7PVx3wXWBHLMSB1sshwFVb9B1V/WG4FeWq+bj9V5gddnzVYVtc+5jjGkB+oHIoi0XIB6vvMRu2FF1995u8d7uUXYPM0GOq8vWCOV4UHVX9QZdd1VvCN69mqvKvcCxxph1xpg24HXAzbP2uRl4c+Hx5cAdtg5L1rW3twd9SGeountvt3hv9yi7h5kgx9Vla4RyPKi6q3qDrruqNwTvvuBVpdDz+07gVmAz8G1r7SZjzLXGmIsLu30ZGDTGbAX+BjhgirUgyGQy9TisE1TdvbdbvLd7lN0rEYYpL4McV5cLaijHg6q7qjfouqt6Q/DuVTVZWGtvAW6Zte3DZY8TwGsCNZsD1XWxQdfde7vFe7tH2X0uyqa8vID8zc33GmNuttY+WrZbacpLY8zryE95eUXAHoEdq1gRLv5bT5TjQdVd1Rt03VW9IXh3qZXlmpqkdGeg6u693eK93aPsXoFQTHkZ5Lg2mSYMhpam+t/coxwPqu6q3qDrruoNwbsvOGtEvTDGDAO7FvltKwDVWaBV3b23W7y3e2pxP9JaG8qlmYKc6ccY83bg7YWnxwNbFqGiGhOq3qDrruoNuu6q3lC7+5zX7YbNnVHLfyLGmI2qUxapuntvt3hv9yi71xtr7X8A/1HL96qOq6o36LqreoOuu6o3BO+uWxv3eDwez1yEZspLj8fjCTs+EfZ4PJ4/LkIz5aXH4/GEHbVlRWr6E11IUHX33m7x3u5Rdj8Aa23GGFOc8rIZ+Epxyktgo7X2ZvJTXt5QmPJylHyyHDSq46rqDbruqt6g667qDQG7N+xmOY/H4/F4PB6Pp5H41giPx+PxeDwez0GJT4Q9Ho/H4/F4PAclMonwQkuGNhJjzFeMMfsLc3MWtw0YY35qjHm88O/ywnZjjPm3wnk8ZIw5o4Heq40xdxpjHjXGbDLGvEvB3RjTYYz5nTHmwYL33xe2ryssF7u1sHxsW2F73ZeTXaR/szHmfmPMD8W8dxpjHjbGPGCM2VjYFupYKbgsM8Z81xjzB2PMZmPM8xS8VQnztXo2i70Gho1qryVhYzG/k2HCGPN/C3HyiDHmW4X/i0I55kY3L5nL+xOFWHnIGPMDY8yysteuKXhvMcZcWMvPlEiEzTNLhr4MWA9caYxZ31irGXwVuGjWtvcDt1trjwVuLzyH/DkcW/h6O/A5R45zkQH+1lq7Hngu8I7CuIbdPQmcb609FTgNuMgY81zyy8R+ylp7DDBGfhlZKFtOFvhUYb9G8i5gc9lzFW+AF1lrTyubwzHssQLwr8BPrLUnAKeSH3sFbzkErtWzWew1MGxUey0JG4v5nQwFxpiVwP8BNlhrTyJ/I2pxefIwjvlX0cxLvsqB3j8FTrLWngI8BlwDUPhdfR3wrML3fLZwDVoc1trQfwHPA24te34NcE2jvWY5rgUeKXu+BTi88PhwYEvh8ReAK+far9FfwP8AFyi5A13A74HnkF9ppmV2zJC/e/55hccthf1Mg3xXkb8AnQ/8EDAK3gWHncCKWdtCHSvk58fdMXvcwu6t+qVwrV7Af95rYJi+FnMtCdPXYn8nw/IFrASeAAYK1+MfAheGecwRzUtme8967TLgG4XHM64v5f9nLuZLoiLMMwFYZE9hW5g51Fr7ZOHxU8ChhcehPJfCn91PB+5BwL3wJ8EHgP3kPy1uA6LW2swcbiXvwuvjwKBT4Wf4NPBeIFd4PoiGN4AFbjPG3GfyS+9C+GNlHTAM/GfhT8hfMsZ0E35vVWTHr8prYJj4NNVfS8LEYn8nQ4G1di/wz8Bu4Eny1+P70BjzIn8M1723AT8uPA7EWyURlsbmP6qEdp46Y0wP8D3gr621E+WvhdXdWpu11p5GvirybOCExhotjDHmlcB+a+19jXapkXOttWeQ/zPaO4wxLyh/MaSx0gKcAXzOWns6MMWsP7mG1NvjELVroPi1RPJ3stBPewn5RP4IoJsD/4QvQxjHeCGMMR8k3870jSCPq5IIV7NkaNh42hhzOEDh3/2F7aE6F2NMK/n/AL5hrf1+YbOEO4C1NgrcSf5PUstMfrlYmOkWluVkzwEuNsbsBG4k/yfNfyX83kCpIoK1dj/wA/IfQMIeK3uAPdbaewrPv0v+P+Gwe6siN36LvAaGhcVeS8LEYn8nw8JLgB3W2mFrbRr4Pvn3QWHMi8he94wxbwFeCbyhkMRDQN4qiXA1S4aGjfIlTN9MvvesuP1Nhbs0nwuMl/2pwinGGEN+hanN1tpPlr0UandjzFDxrlFjTCf5nr7N5BPiywu7zfZu+HKy1tprrLWrrLVrycfwHdbaNxBybwBjTLcxprf4GHgp8AghjxVr7VPAE8aY4wubXgw8Ssi9hZG6VtdwDQwFNVxLQkMNv5NhYTfwXGNMVyFuit6hH/MyJK97xpiLyLcBXWytjZe9dDPwOpOfYWkd+Zv9frfoH9CoZujFfgEvJ3+34Dbgg432meX2LfI9Q2nyn3b/lHy/1u3A48DPgIHCvob8XdXbgIfJ34HaKO9zyf9p5CHggcLXy8PuDpwC3F/wfgT4cGH7UYVfgq3Ad4D2wvaOwvOthdePCkHMvBD4oYp3wfHBwtem4u9g2GOl4HIasLEQL/8NLFfwVv0K87V6DtdFXQPD+FXNtSRsX4v5nQzTF/D3wB8K/+/cALSHdczRzUvm8t5Kvhe4+Dv6+bL9P1jw3gK8rJaf6ZdY9ng8Ho/H4/EclKi0Rng8Ho/H4/F4PIHiE2GPx+PxeDwez0GJT4Q9Ho/H4/F4PAclPhH2eDwej8fj8RyU+ETY4/F4PB6Px3NQ4hNhz0GLMeaFxpgfNtrD4/F4PAvjr9meeuATYY/H4/F4PB7PQYlPhD2hxxjzRmPM74wxDxhjvmCMaTbGTBpjPmWM2WSMud0YM1TY9zRjzN3GmIeMMT8orA+PMeYYY8zPjDEPGmN+b4w5unD4HmPMd40xfzDGfKOwYpDH4/F4asRfsz1K+ETYE2qMMScCVwDnWGtPA7LAG4BuYKO19lnAL4CPFL7lv4D3WWtPIb9CTnH7N4DrrbWnAmeTX7kG4HTgr4H15FcIOqfOp+TxeDx/tPhrtkeNlkYLeDwL8GLgTODewgf/TmA/kANuKuzzdeD7xph+YJm19heF7V8DvmOM6QVWWmt/AGCtTQAUjvc7a+2ewvMHgLXAr+p+Vh6Px/PHib9me6TwibAn7Bjga9baa2ZsNOb/m7VfrWuFJ8seZ/G/Ex6Px7MU/DXbI4VvjfCEnduBy40xhwAYYwaMMUeSj93LC/u8HviVtXYcGDPGPL+w/SrgF9baGLDHGHNp4Rjtxpgulyfh8Xg8Bwn+mu2Rwn+S8oQaa+2jxpgPAbcZY5qANPAOYAp4duG1/eR70gDeDHy+cNHcDry1sP0q4AvGmGsLx3iNw9PweDyegwJ/zfaoYayt9a8THk/jMMZMWmt7Gu3h8Xg8noXx12xPWPGtER6Px+PxeDyegxJfEfZ4PB6Px+PxHJT4irDH4/F4PB6P56DEJ8Iej8fj8Xg8noMSnwh7PB6Px+PxeA5KfCLs8Xg8Ho/H4zko8Ymwx+PxeDwej+eg5P8HIfwxNNmiutgAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAALJCAYAAAC+1UUaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5gkVbm432/y7mzeHRbYJeckaUmCghFQCYoiICJeBLnKNefAFRWv6E/FwFUREbmKiCiKCqKACEpccsZlCbtL2Mk59fT5/XGqpqtrquNUV9cH532eebq7uqb6rdPV1V99/Z1zxBiDw+FwOBwOh8PxcqOh3gIOh8PhcDgcDkc9cIGww+FwOBwOh+NliQuEHQ6Hw+FwOBwvS1wg7HA4HA6Hw+F4WeICYYfD4XA4HA7HyxIXCDscDofD4XA4Xpa4QPhljoh8SUR+UW+P2SAiT4vI6+vt4XA4HFpI07n/pXgOF5FrReQ99fZwlMYFwinBOxGMisiQiLwgIpeIyLx6e1WKiNwkImPefvh/f6y3VxgROUxEjIh8ut4uceDty/b19nA4HJXxUjj3i8iPROTSiOV7isi4iCyZxbYv8c5vx4SWf8dbfmq1256FkxGRYe896xaRG0TkncF1jDFHGmN+nrSbo3JcIJwujjLGzAP2AvYGPltfneKISGOBp84yxswL/B2VqFh5vAfoAU6pxcZFpKkW23U4HC9JtJ/7fw68TUTaQ8vfDfzJGNMzy5d8gsC52ju/Hg88OcvtzoY9vfdsJ+AS4Aci8t919HFUiQuEU4gx5gXgOuxJEQAROVBEbhWRPhG5X0QOCzy3jYjcLCKDInK9iFzg/+TlZT7XB7df7GcoEfmNl5Xo97a5W+C5S0TkhyJyjYgMA6+pZL98FxH5nIh0eR7vCjy/UEQuFZFOEXlGRL4gIg2B508XkUe9/XxERPYJbH4vEXnA8/61iLQV8WgH3g58ENhBRFZ5yz8tIleG1v2uiHwv4PdTEXleRDaIyFf9LwQROVVE/uVlKbqBL4nIdiJyo5cx6BKRX4rIosC29xGRe739+Y3n/dXA828Rkfu89/xWEXlFJe1dqk1FZHsR+YfXZl0i8mtvuXj7sVFEBkTkQRHZvdLXdjgclaH13G+MuQ3YABwX+J9G4CTg0lLnwjL4I3CIiCz2Hh8BPAC8ENqH//C+I3pF5DoR2Srw3HdFZJ13TrtbRF4VeO5LInKFd64cFJGH/e+FUhhjuowx/wf8J/BZEVnqbfMmEXlf4DUiv79EZHMR+a13jn5KRD5UQbs4YsAFwilERFYCRwJrvMcrgD8DXwWWAJ8AfisiHd6/XAbcCSwFvoS9Cq+Wa4EdgE2Ae4Bfhp4/CTgXmA/8s4rtbwosA1Zgs7IXishO3nPfBxYC2wKHYjMA7wUQkXdg9+0UYAFwNNAd2O7x2JPjNsArgFOLOLwNGAJ+g/3S8eu4LgfeJCLzvdds9LZ7mff8JUAG2B6btXkjMH2iAw4A1gLLsW0kwP8AmwO7AFt4+4CItABXedtcAvwKeKu/IRHZG7gYeD/2ff0xcLWItBbZrygKtinwFeCvwGJgpbcu3n69GtjR+9/jyW9rh8NRA5Sf+y8l/xe21wPNwDUUOReWyRjwB+AE7/Ep3utNI7Z04nPY83sHcAv2vOpzF/YCYwm23X4j+QmTo7HfAYuAq4EfVOCH59cE7B9+otD3l5eU+CNwP/Y78XXAR0Tk8Apf2zEbjDHuLwV/wNPY4GwQMMANwCLvuU8D/xda3w/gtsQGZ3MDz/0C+IV3/zBgfcRrvd67/yV/3QinRZ7LQu/xJcClJfbjJmAE6Av8fSXgkgHaA+tfAXwRaAQmgF0Dz70fuCmwvx8u0nYnBx5/A/hREcfrgfO9+ycCnUCz9/ifwCne/TcAT3r3lwPjwJzAdk4E/u7dPxV4tkTbHAvc691/NTaDIoHn/wl81bv/Q7/dAs8/DhxaYNsG2D60rFSbXgpcCKwM/d9rsT9FHgg01Puz4f7c30v5j5fOuX9LYNI/n2AD6e8WWHf6XBj2ilj3EuyFwCHAbZ7bi8Ac75x5qrfetcBpgf9rwH4XbVVgu73Y8ga/La4PPLcrMFpkX2ecb73lLwDv8u7fBLwv8J59OGL9Awh9b2DLYn5W7+Py5fTnMsLp4lhjzHzsCWxnbOYUYCvgHd5PY30i0oc9KWyGvcLuMcaMBLazrpoXF5FGEfm6iDwpIgPYkxMBj3K3/SFjzKLA3xcDz/UaY4YDj5/x9mEZNnvwTOi5Fd79LSheDxb8iWwEiOxsIiJbYH/W87MdfwDagDd7jy/DBrhgMyB+Nngrz+/5wHvwY2z2xCevbURkuYhcLraMYgD7JeW35ebABuOd+SL+fyvg46H3fAvv/8qlVJt+CpupudP7KfA/AIwxN2KzIRcAG0XkQhFZUMHrOhyOylB/7jfGPAvcDJwstrPfsXhZ2xLnwrIwxvwTm+n9PLbueDS0ylbAdwPt1IM9v63wHD7hlSb0e88vDDmEv0PapIK+HiLS7PlF1UMX+v7aCtg89P5+Dpt4cSSEC4RTiDHmH9ir4P/nLVqHzQoEg8t2Y8zXgeeBJSIyN7CJLQL3h4Hp57yf+zuI5iTgGOxPWguBrf1/C+pVtVM5Fkt+h4otgeeALmw2YavQcxu8++uA7Wb52mB/OmwA/igiL2BLGdrIlUf8BjjM+4nyreQC4XXYjPCywHuwwBizW2Db4bb5mrdsD2PMAuBkcm35PLBCRIJtG3zf1gHnht7zucaY4E99pSjapsaYF4wxpxtjNsdmiv9XvJEnjDHfM8bsi82M7Ah8soLXdTgcVfASOPf/HHuOPQ54yhhzt7e82LmwEn4BfJxQWYTHOuD9obaaY4y51asH/hS2zGuxMWYR0F+lQyGOwWbo7yzgFvX9tQ7bTkHn+caYN8Xo5SiBC4TTy/nAG0RkT+yH/ygROdy7cm8T2xFipTHmGWA1tnNWi4gcBARHaXgCe2X7Zu+K9QtAoTrT+dhgrxt7Av1abXaNczzXVwFvAX5jjJnClkmcKyLzvU4OH8PuO8BFwCdEZF+xbB/sCFEB7wHOwdaK+X/HYWuDlxpjOrE/af0Me4J6FMAY8zy2nvZbIrJARBrEdgA5tMhrzcf+5Nnv1foFg8nbgCngLBFp8urbgrVlPwHOFJEDvP1t997D+UVer8U7NtoCtW8F21RE3uEF/GB/JjRAVkT28163GftlOgZki7yuw+GIj/PRe+7/LfZi+xxsUBzcfqFzYSV8D1uydnPEcz/CdlbbDaY7Cr8j8PoZbBlck4icja3VnTUiskRsp+8LgPOMMVH9KQp9f90JDIrtqD3He493F5H94nBzlIcLhFOKF5BdCpxtjFmHvdr8HPaDvA57IvHfv3cBB2FPYl8Ffo09qWGM6Qc+gP0gbsAGNnk9iQNciv3pfAPwCHB7lfo/kPxxhO8OPPcCNuh6DluecKYx5jHvuf/y/NZia78uw3YYwxjzG2xHjcuwtXS/x3Z6KBsRORCbHb3Ay4b6f1djO6f4JRGXYTMjl4U2cQrQgm2bXuBK7E+UhTgH2Aebefgz8Dv/CWPMBLZTx2nYOuqTgT+Re99WA6djSxR6Pb9TS+ziw8Bo4O+9FGlTYD/gDhEZwnYO+bAxZi32C+In3us+gz2uvlnitR0ORwxoPvd7ZW+/xXa+DXa2K3gurHD7PcaYG0IlZf5zVwHnAZd75RcPYTsegq3R/Qv24uAZ7MV9VWUkAe73zp1rsJ2mP2qMObuAd+T3l5cAegs2IfMU9le8i7BZeUdCSMTx5FCO2GGwHjPGpGpMQ7HD/vzCGLOyxKovS0TkDmwnv5/V28XhcOgjred+hyPNuIzwSwDvp+ztvJ/rj8BmEH5fZy1HCUTkUBHZ1CuNeA922Le/1NvL4XDowJ37HY7Z4wLhlwabYutah7A1VP9pjLm3rkaOctgJO35kH7YDyNu9WmSHY1aIyMViJ0R5qMDzIiLfE5E1Yiei2SdqPUfqced+h2OWuNIIh8PheIkhIq/GBkeXGmNmzAooIm/C1o+/CTuW6XeNMQcka+lwOBz1x2WEHQ6H4yWGMeZmoscz9TkGGyQbY8ztwCIRKdbx0+FwOF6SlD1YdNwsW7bMbL311hX9jzGG/GFX9aDV3Xkni/NOnmrc77777i5jTKExWTWwgvxe8+u9ZXmlOSJyBnAGQHt7+7477bQT/q+IIkI2m6WhoYFsNktjYyOZTIampiYymQyNjY1MTU3R1NTE1NTU9HoNDQ152/DbP2obUbf+tsK/Zla7Dd/B38bU1BSNjY0lt5XGffKP4/A+FXuf0rBPk5OTNDc3V/Q+pWWfjDFleWjapzg/T7XYp0LHS6l9uvfeeyPP23ULhLfeemtWr15dr5d3OByOqhGRZ0qvpR9jzIXYabhZtWqVcedsh8OhlULnbVWlEZ2dnfVWqBqt7s47WZx38mh2nwUbyJ+FbCW5WRxjQWu7avUGve5avUGvu1ZviN9dVSDc0aH3l0it7s47WZx38mh2nwVXA6d4o0ccCPTHPWKJ1nbV6g163bV6g153rd4Qv7uqQNhdwSSP804W5508mt0LISK/wk7jvZOIrBeR00TkTBE501vlGuxsg2uwswh+IG4Hre2q1Rv0umv1Br3uWr0hfve6DZ/m6s0cDodWRORuY8yqenskiTtnOxwOzRQ6b6vKCHd3d9dboWq0ujvvZHHeyaPZPc1obVet3qDXXas36HXX6g3xu6sKhBcvXlxvharR6u68k8V5J49m9zSjtV21eoNed63eoNddqzfE764qEB4YGKi3QtVodXfeyeK8k0eze5rR2q5avUGvu1Zv0Ouu1Rvid1cVCLe3t9dboWq0ujvvZHHeyaPZPc1obVet3qDXXas36HXX6g3xu6sKhMfGxuqtUDVa3Z13sjjv5NHsnma0tqtWb9DrrtUb9Lpr9Yb43VUFws3NzfVWqBqt7s47WZx38mh2TzNa21WrN+h11+oNet21ekP87qoC4Ww2W2+FqtHq7ryTxXknj2b3NKO1XbV6g153rd6g112rN8TvrioQbjnpJPjc5+qtURX1Gq95tjjvZHHeyaPZPc1obVet3qDXXas36HXX6g3xu6sKhBv+/W94/PF6a1RFU1NTvRWqwnkni/NOHs3uaUZru2r1Br3u6rwnJ6fvFnQfHISpqdq8fk8PPPfcrDZRss0zGbjmGgiP0JCCTHLcx4uqQNi0tIDSAu/x8fF6K1SF804W5508mt3TjNZ21eoNet3r7v33v8MHPgD77gu77w4//CGMjkave+21sGQJ/OEPQBH3V7wCXvlKWL8+Xtc//Ql22gm23Ra+8AUYHraB+YYNMDJS9mYKehsDf/yj9X/zm2GvveDOO+Gxx+ANb4DNNpsZHMfNo4/C00/nHt99N5xyCnz60/CrXzHx2GOxvpyqQLhh7lyo9wemSubOnVtvhapw3snivJNHs3ua0dquWr0hhe7GlJVBjN37uuvgU5+yrx/m/vvh29/OX3byyXDppbBoEcyda4PibbaB8JTifX3wvvfB0BCcfjps3BjtbgysW2cDyH32gZtvrn5f/v53OPpoeOc74bjj4KijYMUKeNvb4NxzYZNNoK0NVq6E9nYbqJ5zTsnNzvD+y1/g2GOho8O+XjYL3/++vT34YBsY/+tfsHEj/PnP5bl3dcELL1S2v8PDcNBBsMMOtq0/9Sk44AB74fGd78BJJ9H+gx9Uts0SqAqEM83NajPCg4OD9VaoCuedLM47eTS7pxmt7arVG1Loftpp8I53lFwtVu+//c0Gct/8Jtxzz8znv/Y1+PjHbekC2MDrueds/6MbboA77oCbboLWVht4dnXl/vfjH4cXX4RLLoH+fjjzTIbvuMO+XnA/JyZsWcQpp8DixTbALJRhDjMyYksfJifhq1+F17/eZkTvvx9uvRU+8hG4/Xa47DL45z/hPe+Bz38e/vd/7frz5sEVV5R8mRlt/oUvwC232H35v/+DBx+Es86Ce++Fd73L7suTT8Kmm8Jvf1vevhx1lA3M99vP+pXD5Zfbtj32WPjFL+z7+J73wDPP2AuQ++9n8PTTy9tWuRhj6vK37777mkrJvulNxlTxf2kgm83WW6EqnHeyOO/kqcYdWG3qdO6s11+l52ytx4RWb2MSdj//fGM+8AH799vfRq+z997GbLFFyU3F5v3Pfxozd64xu+1mTGOjMZ/7XP7zk5PGLFpkDBhzzz122QMP2MeXX56/7l13GdPaaswb3mDM008bc955dr3PfMY+/41v2Mf+34IFuf/t6bHLvvMdY66/3t7/5S9L+2ezxmy2Wf52TzrJmMHB8tvgfe8zZvnyMl4q1ObLlxtz+umlt/+BDxgzZ44xQ0Ol1912W2N22smYXXax+1LOfuy3nzG77mrbYsMGYx56qLR7mRQ6b6vKCE+IqM0Id3d311uhKpx3sjjv5NHsnma0tqtWb0jQfXzcZiYvuQQuvtjej2LjRlu7mskU3VxJ73Xr7E////VfhTOrTz1ls5krV9rM7qGHwlVX5a9zxx22vAHg3/+2t08+aW+32y5/3VWr4Ac/sBnmrbe29amvfCX893/b5z/2MTjtNEbOOgvOPNNmlv1SjOFhe9veDq95jS2z+OlPi+8j2Pjm+edtbe6XvgS/+pXNis6bV/p/fZYutRnlEiMr5LX55KR9rzbfvPT2jzvOvgd/+UvpdScmbFmFX6rht3kh7r0X7roL3v9+ELE+u+1W3D0GVAXCrQsXqg2Ely1bVm+FqnDeyeK8k0eze5rR2q5avSFB94kJe3vOOfZv3TobfAUxxgZX2WzJEQ5Ken/72zZA/MEPbID6yCP5z4+MwFvfal/rmmtg+XJbQ/voo/bP59procELe9assbeFAmGwNarnnw9f/zo8/LAtRWhrs881NsJFFzH3+9+HLbawpRB+H6ZgINzQAO99L9x4I6xda5877bToQNIvVzjySBtwn3CCDQgrYelSG9gODRVdLa/Nn3/evl8rVpTe/qtfDcuWwZVXll53fBxaWmznPig96tePf2zb993vLrpa3Me5qkB4FNR2luvs7Ky3QlU472Rx3smj2T3NaG1Xrd6QoLs/fFhzM+y9t71///356/T25tZ79tmimyvq3dMDP/mJrVO97jpbo/uhD+WeN8Z2XHvgAZtB9QPaY4+1t8Gs8LXX2o5Ym2+ey06uWWPreBcvjn79D3/YZoN33TUyKO3s7LQBL+QCYP/W75B26qk2IP7Rj2yAfvHF1jmc3faD10oywGGWLrW3JbKmeW2+YYO9LScQbmqybfunP5VOTE5M2EB4hx1s2z3xROF1h4bgl7+0nQILvRdR7jGgKhCeozgj3NHRUW+FqnDeyeK8k0eze5rR2q5avSFBdz/AbWmBPfe09++9N3+djRtz96MC4a6u6Y5oRb0vuMAGlp/6FLzxjbZT2l135UajePBB23Hs7LPhiCNy/7diBRx4IPzud/bxCy/YznNHHgnbb59fGhGVDS6Tjo6OmYGwP4yZv3yLLeDww23Hr7/+1Y5KsX693bcgfkZ4/vyqfYoGwhdfbIeGI9TmlQTCYMsjhoZmlp6EmZiwnQ7nzIEttyyeEb7+ervN97yn5MvHfZyrCoRHjVEbCHcFe54qwnkni/NOHs3uaUZru2r1hgTd/dKI5mY7fNfmm8N99+Wv8+KLuftRgfBpp8F//AdQxHt0FL73PVszu/vudtm++9pxbP2ShltvtbdRAdRb32pHXLj3XptNBhsI77BDbIFwV1dX4Yywvxzggx+0WdHzz7cB8BFH2BEs/JplqH0g/LOf2QuGbDa/zf3SlXID4de/3l4AfexjNvNfCL80Amx5RLFA+JZb7LoHHVTy5eM+zlUFwm2LFqkNhJf6B6cynHeyOO/k0eyeZrS2q1ZvSNA9WBoBdtKFSgPh9eunM8JLly61QdPBB9shuzZutBMqnHCCXefTn87937772tu777a3d9xhg/Gtt575Gscfb8sM9tnHDn22fLl13WEH+xo9PXZYrlkEwkuXLi0vEH7zm21w+uEP28f/8z82iPzGN3Lr1Lo0YnjYtuf99+cfKxs22MxtucdPU5PNLnd22mA4iqkpm7X3A+Edd7SBcKFOfLfcYscL9muwixD3ca4qEB4D2/u0VtMW1pC+4FWfIpx3sjjv5NHsnma0tqtWb0jQPSoQfvTR/ESVHwivWGGDzTBDQ9OZ5b6+PhuY3nqrzZZutx3svLP9ufzrX4dDDsn932672eDKD4Rvv92WQER1Ktt6a5v5/dKXbIB18sm2VneHHezzN95o44lZBMJ9fX25wNUPZMM1wj7B2te99oK3vAV+/evcsjgywkuW2NuoQNgv2fjb3/KPlQ0bbFa/ko55++xjL1AuuSSXbQ/i/2rQ2mpvd9rJto8/wca//pXLyg8N2bKVV72qrJeO+zhXFQi3LFxo7yjsMDd/Ngd2HXHeyeK8k0eze5rR2q5avSFB92CNMNigLpPJH81h40YbdO69d3RGeHBwOliaP39+bptf+IItaTj5ZJtB/PSn8wO0lhY7y9ndd9uM6mOP2UxiITbd1I7AsH49/L//Z5f5gbA/csMsAuH58+eXrhEuxNZb55cWxJERLjMQzjtWNmwovywiyBe/aP/vwgtnPufHacHSCLDv6cSEzZCffLJddvvt9oKkzEA47uNcVSA86X8YFJZHjFQwB3iacN7J4ryTR7N7mtHarlq9ISb3Bx6AbbfNL20IE6wRhtzIEcHyiBdftNP1brNN4UDYC35HRkZy29x1Vzvd8UUX2TGBo9h3X5tBvOMO+/jAA8vbNx8/8PUD4e23r+z/A4yMjJRXGhHFggW23tkvF4gjI9zcbLdbqDQC4JZbGAk+X20g3NZm/8/fbhD//YwKhG+80c4ed+ed9oLmllvsRdMrX1nWy8b9GVUVCDf6B5XCQLjV/3lAGc47WZx38mh2TzNa21WrN8Tkft99dnIKv/QginBpxLbb2ixmOBBevtyOFjAwYAMfn2w2rzSitbV1Zpa5GPvua7f3y1/abPF++5W9e4AtWVixwgaAbW12GuAqaW1tLT18WiEWLrSZUD+wiyMQhtykGmFGRmynw/Fx2lavtsuMqT4QBlv6EPUrfbg0YuVKO3rEE0/YkTzmzbPt87//awPhvfayAXxZLxnvZ1RVIJz1i6gVXrFnSsysk1acd7I47+TR7J5mtLarVm+IyX1gwN76ozJEEQ6EGxrsKALBQHjjRtuJbcst7eNgVtgPFL3tZDKZmRnEYvgd5q64wgZ21QSOfnnEttvmJtmogkwmkytlCAbCzc259imEX+7pXyQMDdn/KacNirF06cyMcDZrk4hHHmlf4/rrc689MlLerHJRFAqEw6URDQ22w9wjj8Dvf2/ro08+2Q59d9ttZZdFQPyfUVWB8PTB7l81KUIqnR0mJTjvZHHeyaPZPc1obVet3lCG+5e/DK97XfF1KgmEgwGbP3KEP76vnxHeaiv7OBgI+9/hXvArIjPLLYqx++72tScmKi+L8PED4VnUB4PnHlUjXKosAnIZUD8QHhycfTYYogNhP4HY0QGvfCVNf/+7fVzpGMJh2tqKZ4SDx8iOO9oAvLPTTizyn/9pg/OxsYoC4bg/o6oCYfGvnvwPqiIaZnHFWU+cd7I47+TR7J5mtLarVm8ow/2Pf7T1mcV63ftBmT8FcRThjDDYQHhw0E4jDPmlERAdCHvbaWhoqKw0wu8wB8U7yhUjpkC4oaHB/uQvkj9qRDmBcDimGRqaXUc5n2KB8Ny58IY30HD//fY9mm0gXG5pBNg64UzGLjvySHvM+HXBwZFBShD3Z1TVJ37SL41QmBGe9D/kynDeyeK8k0eze5rR2q5avcFzHxuLnuRgctJ2hAPw60OjKCcjHJW93Wsve3v//TYQHBmxpRHLl9v1gkOo+QGjt53JycnKMsKQK4+oNiPsd5CbZSA8OTlpg+C5c/NLIyoJhJPICAc78L35zfb+NdfULhAOl0ZArsPc4YfnAv7vfAfOO88eJ2US92dUVSDc4g+irDAQbitjkOg04ryTxXknj2b3NKO1XbV6g+f+la/Aq18988lHHskFm3fdVXgjfiC8dm3hMfujMsK77w6NjXYWN3/EieXLbW3oFlsUzQi3tbVVlhEGOOUUO5vcLruUt36Y/fazZQIHH1zd/3tMHy/t7ZUHwrUsjejvt9lXn2BGeM89MVtsYX8h8APhuGuEo0oj9tjD3r797bll++9vp8+ugLg/o6oC4ZGmJntHYWnEcNTwIgpw3snivJNHs3ua0dquWr3Bc3/+edtRLcw999jb9nY7bFUh/KBsYiIXJIWJCoTb2mxQet99+YEw2PKIIjXCw8PDlXWWA/uT+iWXVN/RbeVK207+0G9VMn28zJuXXyNcasQIqF1phD+WcHDkiGAgLMLEG95gJ8JYu9YGztUGl6UywsHSiD33tEPevetd1b2WR9yfUVWB8Hz/ikVhRnhBmcOCpA3nnSzOO3k0u6cZre2q1Rs890Kzr95zjw2yjjqqdEbYTzoVKo8olL3de++ZGWEoHAgbA1NT1rvS0oiUMH28VJMRrmVpBOSXR4TGNm4+7jgbHP/ud9WXRUBlGWGwGeBZ1vjG/RlVFQj3TkzYWhyFGeHeqJotBTjvZHHeyaPZPc1obVet3uC5ZzK5kRuC3HOPreM94ACb6X3uueiNDAzYSS2gcCBcKGjday+73Yceso832cTebrWVfU3/p/pgMmtiwnpXWhqREqaPl/b2yjvL+dnf4PBpcQbChTLCQO+ee1rH/v5kA+EYiPszqioQXtrRYQ8chRnhpf6BqQznnSzOO3k0u6cZre2q1Rs896iM8NSULVnYd1+bkYPCWeGBAdhtNxvklsoIRwXCAH/9q731A+GVK21w/sIL9nEoEF66dKnajPD08VJNRrix0Qa+fnJvcDC+USMgPyMcCoSXrlhhO61BPIGwPzueT1RpREzE/RlVFQh3dnbC4sXRPWJTTmdnZ70VqsJ5J4vzTh7N7mlGa7tq9QbPPSoQfuIJGwjts48NVhsbCwfC/f22xnSbbQoPoVYqEL7tNvtd7WcDly2zt35g5mdOvW11dnaqzQhPHy/BQLjcGmGw5RF1KI3o7Oy0ZTJQfUc5sIGuMbn3z6eGGeG4P6OqAuGOjg77gerqqrdKxXR0dNRboSqcd7I47+TR7J5mtLarVm/w3KNKI/zpkvfZxwZoe+wR3WHOGJudXLDADitWaY3wkiW2HjiTyWWD/eWQ+6k+lBHu6OioaeBUS6aPl2BnuXIzwpALhCcm7F9CGeGOjg47u9vixfa4qBY/4xsuj6jh+xn3Z1RVINzZ2ak2ENaaZXDeyeK8k0eze5rR2q5avaFIRviee+ykDzvvbB/vt5/NCH/xi7BoEfzoR3b52Jj9/wUL7Di7Tz458ydvKF7G4GeFg+PChmtWg4GwnxFWWhoxIyNsTGWB8IIFNhD2s+RxZITnz7cdHktlhP146phjqn+tQoFwDUsjXEZ46VKVgbDWLIPzThbnnTya3dOM1nbV6g1FMsL33GOHrvJHg9hvPzu73Fe/aoPSe++1y/1aVT8jPDAQ/X1bqDQCcsORBQNhPyPsB2ZRGWGlpRHTx4vfWW5szAbDlWSEBwZybRJHICwyc1INPyM8Z06+92xnaXMZ4WTp6elRmxHuCfbeVITzThbnnTya3dOM1nbV6g2e++TkzIzwQw/ZQNjn+OPhs5+1Heh23hn8DJtfq7pwYW7GtajyiGKBsJ8RLrc0YnLSeivNCE8fL35G2M+8Vloj7GeE4yiNgOhAuKVl+mIotuO8DoFw3J9RVYHwwoULbSDs19MoYqE/XqAynHeyOO/k0eyeZrS2q1Zv8NwzGZuRDJY0jI7mZxoXLoSvfc0Gxx0dueRSMCPsT0FcKBBuarKZxzB+RnjTTXPL5syxfwVqhBcuXJgLrv2stRKmj5f2dtvmwcC4HPzSiDgzwjAzEA6Va8R2nNehNCLuz6iqQHhoaMhO1Qj5g3MrYCjYS1YRzjtZnHfyaHZPM1rbVas3eO7+WL3B8oipKTtSRBQdHbmMcDAQ3mYbe3/t2pn/MzFROHO75Zbwwx/a6Y+DLFmSXxrh/yQ/OWm9JyZs9jAquE4xQ+FMrj+rX6WlEXFnhJcsmTmOcCBLHdtxXiojXIMLm7g/o6oC4Tlz5sBOO9kHjz1WX5kKmePV5WjDeSeL804eze5pRmu7avUGz90PhIPlEcUC4WC5oV8asWCBDXDmzIket39ysnAgLAJnnplLWvkEA7OhITtaAcDEhPUuFlynmOnjxQ98/Vn1KgmER0dzbVOrjHAoEI7tOC8WCNfowibuz2hZgbCIHCEij4vIGhH5TIF1jheRR0TkYRG5LFZLj4mJiVwg/PjjtXiJmjGhrJTDx3kni/NOHs3uaUZru2r1Bs89KiOczRbuFNXRYQOmqalcRtj/6Xnu3FzNa5BigXAhli7NL43w64YnJ6335KS6jnIQOF78wNfPCJdbI+xPF7xhg72NOxD2S2RCpRGxHefFSiNqUBYB8X9GSwbCItIIXAAcCewKnCgiu4bW2QH4LHCwMWY34COxWno0NjbaN3fePFi3rhYvUTMaC12NpxznnSzOO3k0u6cZre2q1Rs893BG2BgbCBcrjfBrW4OlEWADJ3+0gSDVBK3h0gh/SLWJCeutNCM8fbyEA+FKMsKQC4Tj7Cw3Pp57/0IZ4diO81IZ4RoQ92e0nIzw/sAaY8xaY8wEcDkQHnTudOACY0wvgDFmY6yWYTbdNPfzg8PhcDgcDks4I+zfFiuNAFseEQ6E48wI+6UR2azdZiAjPH2rMCM8jR/ABscVLodwIBxnRhhyFx+VzHZXCcUC4RplhOOmnEB4BRBMv673lgXZEdhRRP4lIreLyBFxCQaZ8q9wN900N2e5EqbCw9kowXkni/NOHs3uaUZru2r1Bs89nBH2A+FipRFgA7j+fmhrywWkhTLC1WRv/dIIv6OTHwhPTFjvGmYQa8n08VJtRti/6Fi/3r5HcdW/hicxCZVGxHacFyuNqNH7GfdnNK7Ock3ADsBhwInAT0RkUXglETlDRFaLyOqNGzcyNjbGyMgIw8PDjI+PMzAwQCaTobe3F2MMXV4Bvz+LyODgIMYYJhYvxrzwAgMDA4yPjzM8PMzIyAhjY2MMDg4yOTlJX18f2WyWbu9qyN+Gf9vT08PU1BT9/f1MTEwwNDTE6Ogoo6OjDA0NMTExQX9/P1NTU9Nj1oW30d3dTTabpa+vj8nJSQYHBwvu08jISOQ+dXV1YYyht7eXTCaTun2amJio+H1Kwz61tLRU9T7Ve5/8No/z2Etin4aHhxP9PMW5T34P5EreJ0dpWhQGNaDXGzz3cCDs3xYrjQAbCPvTK/vEnREeH8/9mhsIhFtaWtSWRrQELxqg8hrhYEZ43rz4OpeFJzEJZYRjO87rUBoR92e0nHEtNgDB7p8rvWVB1gN3GGMmgadE5AlsYHxXcCVjzIXAhQCrVq0ybW1teRtp9Rp0sdebdJn3k40/i8jcuXMREVq23BJuuYUF3ge2NZB+97e5aNEiAJZ6V0X+NvzbJd5B4o9HF9Ww/jJ/3fA2/G37r9Uc8SH23VpbWxGRGfvkP/b3OW371NjYSKXvUxr2qb+/v6r3qd77NOF9KcR57CWxT21tbTQ2Nib2eYpzn+aEZlqq5NhzFGZ0dFRlm2n1Bs/dLzXwM8GlAuFwaUQwEG5vzx+Cy6faQBjgmWfsrZ+xnJzMeSts9+njJY4a4ThnTAuXRoQywrEd53UojYj7M1pORvguYAcR2UZEWoATgKtD6/wemw1GRJZhSyUiBh+cHfP8GpxNN7XTQ4YbPsXMi6sAPmGcd7I47+TR7J5mtLarVm/w3AuVRpQKhCvNCFcaiPiBWTgQnpiw3kozwtPHy2wzwhMT8XWUg5mlEaGMcGzHeR1KI+L+jJYMhI0xGeAs4DrgUeAKY8zDIvJlETnaW+06oFtEHgH+DnzSGNMdvcXq6ffHOPRnrFHUYW7aXRnOO1mcd/Jodk8zWttVqzd47uHOcn5AXKhGuLXVBr9dXbZGODhrV5w1wuGMcKCzXH9/v9rOctPHix+cdXfbOutyRzYIXnjE1VEOSpZGxHac16E0Iu7PaFlTfhhjrgGuCS07O3DfAB/z/mqG/1Mly5fb2xdesLPYKGDaXRnOO1mcd/Jodk8zWttVqzd47pXWCIPNCvsZYX9GOYi/Rhjg6afzH09MWG+lneWmj5fWVnuxkc1WNjpDa6v9Gx+PNxBubbUXMt3d9v2anMwrjYjtOK9DaUTcn1FVM8v5nVimM8KKRo6YdleG804W5508mt3TjNZ21eoNnnuhjHCxQNifZjmqRrjQOMLVjBoBkRnhzs5OtaUR08eLSC7QLLc+2MfPwsddluMPWee/h4EAPbbjvA6lEXF/RlUFwn4nFo2lER1xFsEniPNOFuedPJrd04zWdtXqDZ57pcOn2X/MlUZE1Qj7s5P5VFPG4E+pHFEj3NHRobY0Iu94qTYQ9ts8zoww5GaXiwiEYzvOm5rssZVgaUTcn1FVgfD0VcAmm9hblxGuOc47WZx38mh2L4SIHCEij4vIGhH5TMTzW4rI30XkXhF5QETeFLeD1nbV6g2hjHC1pRHhGmFjooOcSrO3c+bYv/Xr7eOXWkYYZp8RrkUg3NOTK28JeMV6nPulHUFqWBrhMsJgG3fxYlWBsNYsg/NOFuedPJrdoxCRRuAC4EhgV+BEEdk1tNoXsB2f98aOBPS/cXtobVet3gAdy5bNzASXWxrx3HN23XBGGGbWCVdTGgE2MPN9Fiyw5QQvpYywX9pQ6QxutSyNqHVGGKID4RqWRrysM8L+YP6Autnl8twV4byTxXknj2b3AuwPrDHGrDXGTACXA8eE1jGAH/EsBJ6LW0Jru2r1BugOlgtWWhrhrxeuEYaZdcLVBsJ+FnjePOvT0gKTk7bNlXaWyzte0loa4V/IBALhWI/zQhnhGr2fcX9GVQXC/iD5gP0g/e538Oyz9ROqgDx3RTjvZHHeyaPZvQArgHWBx+u9ZUG+BJwsIuuxIwL9V9SGZjMb6OLFi1Mxy2TwtpzZCxsbG1Mxy2Q1+zQvMPnR6PCw3ScviJ2CwrO2Bn7Cnpo3b3qfxrzgebynJ2+fzOQk417dcCX7lPEyn9n2dqampjBNTXlTLI95wXvaZs4stk/Nzc3T75PxA8329oqOvUkvcB5raop1n8ySJZjgtNYBL2NMbMdetrmZ7Oho3j5lx8eZamqqyfuU9S7aKv08FaKs4dPSwsDAwPRsUDz8sL395S/hs5+tm1O55Lkrwnkni/NOHs3us+BE4BJjzLdE5CDg/0Rkd2NMNrjSbGYD7evrS8Usk8HbcmYvHB0dpampqe6zTFazT33r1uFbzPFnO2uyX/ONLS0F92n+tttOv17j4sXT++R3aGudmqLVy1YuWrQIJiZo9X7Gr2ifvP49DQsW2FKN1laYnLTrTE7S5r1u2mbOLLZP4+PjudlAA5NrVHTsec+1dXRAnMfe0qU20+//ej537vS2mpqaYpsNlDlzYHKS+cGM9sQEzJkz7Rjn++S3XVyzgarKCLcHf264xhvWWMnscu2V/lSSEpx3sjjv5NHsXoANwBaBxyu9ZUFOA64AMMbcBrQBy+KU0NquWr0B2oOdk/xSh3JLI3xqWSPsl0b4AVNLC0xM2DZX2lku73jx71dbI1yL0giAdd4PRAHXWI/zhEsj4v6MqgqEx8bGcg8OPdReXT7/fP2EKiDPXRHOO1mcd/Jodi/AXcAOIrKNiLRgO8NdHVrnWeB1ACKyCzYQjrUrttZ21eoNMB4MWCsdNcIniRphP+BrbrYlEWNjamuE846X8HTL5eK3eS06y0EuEA4E6LEe5wmPGhH3Z1RVIDzj55HNNrM9XRUQ9dOOBpx3sjjv5NHsHoUxJgOcBVwHPIodHeJhEfmyiBztrfZx4HQRuR/4FXCqN0NobGhtV63eEKp1rCQQDmaEg8OnFcsIVxO0+hnKYEZ4ctK2udJRI/KOlzQOnwaRgXCsx3k4EM5ma/p+xv0ZVVUj7BdIT6MoEJ7hrgTnnSzOO3k0uxfCGHMNthNccNnZgfuPAAfX0kFru2r1BjCTk7kHlZRGzJ8/XaZQj4xwNptVWxqRd7xUGwj7fRQSLI2I9TgPB8L+cVijQDjuz6iqjPCMhMUOO8Djj+c+6Ckm5mRLYjjvZHHeyaPZPc1obVet3hAKhCvJCIvkyiOCwVihjHC1QWtw+DSYzgibTMZ+jyvMCOcdL9XWCB95JJx3Huy1V2xewMzSiEBn11iP87a2/EB4YsLe1qg0Iu7PqKpAuKkplMDefXf7AfWnbEwxM9yV4LyTxXknj2b3NKO1XbV6Q+gn3kom1ABbHtHWlh+MRmWEp6bsbHPVTqgBMzLCTX5gozAjnHe8VFsjPG8efOpTpd+jSvGHhuzttSM7BH4ViPU4D2eE/fs1urCJ+zOqKhAeDxdj77KLvX3iieRlKmSGuxKcd7I47+TR7J5mtLarVm+AiajOcuWURoANhIP1wRCdEZ7Nz95Ro0ZMTjI+OFj9NutM3vFSbWlErWhqypVdhJxiPc7DgbCfEa7R+xn3Z1RVIDw3/HODf3XZ25u8TIXMcFeC804W5508mt3TjNZ21eoN0BbMlFWaEd5+e9hyy/xlzc32L5gR9gPhGDPCc/1tKQyE846XtAXCkLv4CB3XsR7nhTLCNSqNiPszqioQHvSvGn38q9f+/uRlKmSGuxKcd7I47+TR7J5mtLarVm+AkYGB3INKaoQB/t//g2uvnbl87tz8jLCf7asmEN50U/jGN+D44+1jLyM85M1cprE0Iu948Usj0nQx5V98hJxiPc4TzgjH/RlVVQw1Y/YnRYGw1pmrnHeyOO/k0eyeZrS2q1ZvgPlz5uQehAPhUqUR7e3Rmcz29vgywiLwyU/mHnsZ4YV+kKYwI5x3vLz61bbW96CD6uYzAz8jHHpvYz3OEw6E4/6MqsoI+/OAT9Pebq9yFQTCM9yV4LyTxXknj2b3NKO1XbV6A/QH3cPDp1XbESucEZ5NIBzGywj3vvhifNtMmLzjpb3djv4Qmoq8rhTICMd6nCdcGhH3Z1RVILxsWWgGUBE75qGCQHiGuxKcd7I47+TR7J5mtLarVm+ARcGZySotjShEoYxwHNk+LyO8JDicmjJSf7z4gXAoIxyrd2srBGd7q3FGOO42VxUId3ZGzAC6aJGKQDjSXQHOO1mcd/Jodk8zWttVqzdAX1dX7kGlneUKEWeNcBhvEo8ePyOsMBBO/fFSoLNcrN6trfY484+1GgfCcbe5qkC4IzgNpM/ChdDXl7hLpUS6K8B5J4vzTh7N7mlGa7tq9YYCGeFyh08rRJw1wmG80ojpjLDC0ojUHy8FSiNi9fZLIPySiBqXRsTd5qoC4a7g1a7P8uWwfn3yMhUS6a4A550szjt5NLunGa3tqtUboD/oHldpRC1rhL3SiD4/w6cwI5z646VAaUSs3uFAuMYZ4bjbXFUgvNR/Q4Pssw889FB+fUoKiXRXgPNOFuedPJrd04zWdtXqDbAgmPWLqzSiljXCXkZ4oT/ahcKMcOqPlwKlEbF6JxwIx93mqgLhvqgSiH33hUwGHnkkcZ9KiHRXgPNOFuedPJrd04zWdtXqDTAc7C8TV2lELWuEvYzw9DjCCjPCqT9eCpRGxOqdcGlE3G2uKhCe789GE2TlSnv7/PPJylRIpLsCnHeyOO/k0eyeZrS2q1ZvgDnB4LTWGeEYa4Q1zyyX+uOlwDjCsXonnBGOu81VBcIjwQ+jz/Ll9nbjxmRlKiTSXQHOO1mcd/Jodk8zWttVqzfAeNBdUY3wuD9TmMLSiNQfL5tuagcV2GabvMWxeiccCMfd5qpmlmuNSrNvsom99YdfSSmR7gpw3snivJNHs3ua0dquWr0B8sLI8IQasxk1YnLS/jU3x18jnM3S7AfrCjPCqT9e2tvhuecgOOsgMXsnXBoRd5uryghnMpmZC+fOtfN7pzwQjnRXgPNOFuedPJrd04zWdtXqDZD1M3EQb0YYcuURcWeEgazijLCK42XuXDsBWYBYvRPOCMfd5qoCYQm9kdNssgm88EKyMhVS0D3lOO9kcd7Jo9k9zWhtV63eAOIHvRDvzHKQC4TjnlADEH/bCjPCWo+XWL0LBcI1ygjH3eaqAuGGQj/tbLUVPPtssjIVUtA95TjvZHHeyaPZPc1obVet3hAKhOMqjfAzwn6dcA0ywjI6ah8rDIS1Hi+xehcqjahRhj/uNlf1Dk76H8Aw224La9cmK1MhBd1TjvNOFuedPJrd04zWdtXqDTAVHE+/VhnhuGuE0V0aofV4idU7KiPc1FT9xVcJ4m5zVYFwW1tb9BPbbmtLI1Lce7Oge8px3snivJNHs3ua0dquWr0BmoM/Gcc1fFoCGeEmP4BSmBHWerzE6h0VCNewE2Hcba4qEB4ODuESZMst7W2Kp1ou6J5ynHeyOO/k0eyeZrS2q1ZvgIliw6fNZtQIqGmNcMafIEFhRljr8RKrd1RpRA0vauJuc1WB8IIFC6KfWLbM3nZ3JydTIQXdU47zThbnnTya3dOM1nbV6g3Q2hQYETVcI5zGUSO8YKmlxqMM1BKtx0us3lEZ4Rq+l3G3uapAuLe3N/oJfwrBrq7kZCqkoHvKcd7J4ryTR7N7mtHarlq9Acb8WluIv0a4hqURk319NmNdrWMd0Xq8xOqdcGlE3G2uKhBe6ge8M5+wtynOCBd0TznOO1mcd/Jodk8zWttVqzfA3GAWLq7SiEIZ4Rg7y7X4k3UoROvxEqt3wqURcbe5qkC4s7Mz+gkFpREF3VOO804W5508mt3TjNZ21eoNMDIwkMuqxlUaEc4I+2UMTTFMTOtnhPv7VZZFgN7jJVbvhEsj4m5zVYFwR0dH9BPz59sPZYoD4YLuKcd5J4vzTh7N7mlGa7tq9QYvI+wHILWcWa6pacZMZVXhuTaPj6vNCGs9XmL19o+5hEoj4m5zVYFwwasAEejoSPU0y+6qMVmcd7Jo9Qbd7mlGa7tq9QYvI+wHJXENn9bWZr9jgzXCcQWt3namgt7K0Hq8xOotYt+/hEojXEa4ECtXpnr4NHfVmCzOO1m0eoNu9zSjtV21egPMbW622drGxlwAPNuZ5URsVjiYEY4ryPG20zg2pjYQ1nq8xO7d2ppYacTLOiPc09NT+Mktt0z1NMtF3VOM804W5508mt3TjNZ21eoNMDY8nJvRK5wRns0sX3Pn1jQjbIaH1ZZGaD1eYvcOB8I1LI2I272sT4aIHCEij4vIGhH5TMTzp4pIp4jc5/29L1ZLj4ULFxZ+cost4MknwZhavPSsKeqeYpx3sjjv5NHsnma0tqtWb4CWhgYbUAYzwlNTsx+WrL09f0KNuIJWL2sow8NqM8Jaj5fYvYOBcI1LI+J2LxkIi0gjcAFwJLArcKKI7Bqx6q+NMXt5fxfFaukxNDRU+Mk997RXqhdeWIuXnjVF3VOM804W5508mt3TjNZ21eoNkBkdzWWEg6URs8kGQ80zwjPuK0Lr8RK7d4KlEXG7l/Pp2B9YY4xZa4yZAC4HjonVokzmzJlT+MlTToE5c+CBB5ITqoCi7inGeSeL804eze5pRmu7avUGaIRcjXCwNCLOjHANaoRn3FeE1uMldu8ESyPidi8nEF4BrAs8Xu8tC3OciDwgIleKyBZRGxKRM0RktYis3rhxI2NjY4yMjDA8PMz4+DgDAwNkMhl6e3sxxtDlzRTn9xB88cUXMcbQ29tLJpNhYGCA8fFxhoeHGRkbI7vVVkxu2MDk5CR9fX1ks1m6vSHV/G34tz09PUxNTdHf38/ExARDQ0OMjo4yOjrK0NAQExMT9Pf3MzU1NV2PEt5Gd3c32WyWvr4+JicnGRwcLLhPnZ2dkfvU1dVVeJ9GRhgbG2NwcLBu+9Tb21vx+5SGfZqYmKjqfar3PvX19cV+7CWxT52dnYl+nuLcp40bN1b8PjlKM+GPN6sMrd4A2YmJmRnhOALhJDLCSgNhrcdL7N4JlkbE7S6mRE2tiLwdOMIY8z7v8buBA4wxZwXWWQoMGWPGReT9wDuNMa8ttt1Vq1aZ1atXVyQ7Ojpa/ErgsMPsVfDNN1e03SQo6Z5SnHeyOO/kqcZdRO42xqyqkVIqqfScrfWY0OoNMHXssTQ++SQ89xycdBJ8//vwsY/BRRfBwED1G37zm2HjRrjrLjj2WHjqKbj//tkLd3bCJpvY+4ceCjfdNPttJozW4yV27wMPhIUL4brrYMUKOPJIe9zVgGrdC523y8kIbwCCGd6V3rJpjDHdxhjvUoCLgH0rNoyD5cvth9XhcDgcjpcbmczM4dPiyAjPmweDg/Z+nBnhl0BphMMjwdKIuCknEL4L2EFEthGRFuAE4OrgCiKyWeDh0cCj8SnmmPI/2IXYZJPUTqpR0j2lOO9kcd7Jo9k9zWhtV63eAMaf9S3u0oglS8AfsirOGuGXQGc5rcdL7N4JlkbE7V5ysnBjTEZEzgKuw9biX2yMeVhEvgysNsZcDXxIRI4GMkAPcGqslh4tpRp2+XLo66t5j8VqKOmeUpx3sjjv5NHsnma0tqtWb4CGqamZneXiGDVi6VIbCBvjMsIhtB4vsXu3tYHXZ6PWMVjc7iUDYQBjzDXANaFlZwfufxb4bKxmEYyOjhZvAL/WaONGO9NciijpnlKcd7I47+TR7J5mtLarVm+wneUampvjzwgvXWq3099vg5y4akuDXkrbXOvxEru3nxE2pualEXG7q5pZbt68ecVXCAbCKaOke0px3snivJNHs3ua0dquWr0BGo2pzfBpS5bY2+7ueDPCIrkAWGlphNbjJXZvPxDOZGwwXMOLg7jdVQXC/f39xVdYvtzeprBOuKR7SnHeyeK8k0eze5rR2q5avQEy4+PRNcJxlEZALhCOM8jxA2CFWVXQe7zE7u0Hwv7QZjV8P+N2VxUIL/GvSguR4oxwSfeU4ryTxXknj2b3NKO1XbV6AzRDdI1wHKUREH9GGNRnhLUeL7F7+4Gw32GuhqURcburCoT9ge4Lstlm9qeWp59OxKcSSrqnFOedLM47eTS7pxmt7arVG2BybKw2w6f5gXBPj834xRm0Ks8Iaz1eYvdubYWxsUQywnG7qwqEOzo6iq8wdy5stx08+GAyQhVQ0j2lOO9kcd7Jo9k9zWhtV63eEMgI17o0ohYZYaWBsNbjJXbvBEsj4nZXFQiXdRXwilfAAw/UXqZC3FVjsjjvZNHqDbrd04zWdtXqDYEa4bhLIxYtsr+21iIQ9reltDRC6/FSk4zwxASce27ucY1wGeFSbLUV/PvfcOuttReqAHfVmCzOO1m0eoNu9zSjtV21egM0ZbO1mVCjsdEGw7XoLOcywnUhdu9XvQq22QYuvtg+3mKL4uvPgpd1Rri7u7v0Sn4DHXxwbWUqpCz3FOK8k8V5J49m9zSjtV21egNMTUxED58229IIsOURLiM8A63HS+zer389rF1r64T7++HQQ+PdfoC43VUFwosXLy69UkqvzspyTyHOO1mcd/Jodk8zWttVqzdAQzZrA8pgRjiO0gjIBcJxd5ZTnhHWerzUzLuxERYsqM22PeJ2VxUIDwwMlF4ppYFwWe4pxHkni/NOHs3uaUZru2r1BjCTk7WZUANy0yy7znJ5aD1etHpD/O6qAuH29vZyVqq9SBWU5Z5CnHeyOO/k0eyeZrS2q1ZvAJmaqs3waZBfGlGLCTWUlkZoPV60ekP87qoC4bGxsdIrbbll7r5/RZwCynJPIc47WZx38mh2L4SIHCEij4vIGhH5TIF1jheRR0TkYRG5LG4Hre2q1Ruw09uGO8tls/HUCC9ZYierMsZlhANoPV60ekP87qoC4eZyPnw77ggf/KC9PzpaW6EKKMs9hTjvZHHeyaPZPQoRaQQuAI4EdgVOFJFdQ+vsAHwWONgYsxvwkbg9tLarVm8gFwjXqjRiZMTed53lptF6vGj1hvjdVQXC2XIzvLvsYm+Hh2snUyFlu6cM550szjt5NLsXYH9gjTFmrTFmArgcOCa0zunABcaYXgBjTOzz0mttV63eQHRGOM5A2MdlhKfRerxo9Yb43VUFwsaY8lb060f8q9cUULZ7ynDeyeK8k0ezewFWAOsCj9d7y4LsCOwoIv8SkdtF5IioDYnIGSKyWkRWb9y4kbGxMUZGRhgeHmZ8fJyBgQEymQy9vb0YY+jq6gLsgPf+Y2MMvb29ZDIZBgYGGB8fZ3h4mJGREcbGxhgcHGRycpK+vj6y2ez00Ej+oPn+bU9PD1NTU/T39zMxMcHQ0BCjo6OMjo4yNDTExMQE/f39TE1N0dPTE7mN7u5ustksfX19TE5OMjg4OGOfBgcHC+4TkOp9YnKS8WyWKRGmMhmGh4fJZjJkjJn1Po3OnTt9XGSbm+Pbp8AUy5W8T8WOvbS/T2nYp97eXrX71NvbW9X7VAip15fAqlWrzOrVqyv6n/HxcVrLma3kiivgne+Ehx6C3Xar0jBeynZPGc47WZx38lTjLiJ3G2NW1UhpVojI24EjjDHv8x6/GzjAGHNWYJ0/AZPA8cBK4GZgD2NMX6HtVnrO1npMaPXGGJsJPvtsuO02GBy0t4ccAm1tcP31s9v+9dfDG95g7//wh3DmmbN3BjjpJPjVr+Cqq+DYY+PZZoJoPV60ekP17oXO26oywuPj4+Wt6GeEf/1re3JIAWW7pwznnSzOO3k0uxdgAxCc1mmltyzIeuBqY8ykMeYp4AlghzgltLarVu/pUojm5trVCPvUokZYaWmE1uNFqzfE764qEJ4b+GmmKH4g/JWvwJ//XDuhCijbPWU472Rx3smj2b0AdwE7iMg2ItICnABcHVrn98BhACKyDFsqsTZOCa3tqtWbTMbeRg2fFteoET61qBFW2nlL6/Gi1Rvid1cVCA8ODpa34qJFufspGTS6bPeU4byTxXknj2b3KIwxGeAs4DrgUeAKY8zDIvJlETnaW+06oFtEHgH+DnzSGBPrvKVa21Wrd14gXKuZ5XxqMY6w0oyw1uNFqzfE794U69ZqzKJggFuM4FjC8+bVxKVSynZPGc47WZx38mh2L4Qx5hrgmtCyswP3DfAx768maG1Xrd4zMsJxl0a0t9tg1U2xnIfW40WrN8Tvrioj7Pd+LElwHuqU1MGU7Z4ynHeyOO/k0eyeZrS2q1bvghnhuEojRHJZYTeO8DRajxet3hC/u6pAeNmyZeWtKJK7n5KxhMt2TxnOO1mcd/Jodk8zWttVq3fBjHBcpRFQm0BYeUZY6/Gi1Rvid1cVCPtjxZWFP7tcSsYSrsg9RTjvZHHeyaPZPc1obVet3kU7y8UVCPsd5lxnuWm0Hi9avSF+d1WBcEdHR/kr/8//2NuUBMIVuacI550szjt5NLunGa3tqtWbyUl7W6vSCMhlhF1nuWm0Hi9avSF+d1WBsD8jSVn4w2ukJBCuyD1FOO9kcd7Jo9k9zWhtV63e0xnh8DjCrjSipmg9XrR6Q/zuqgLhpcHhW0rR2AitrakJhCtyTxHOO1mcd/Jodk8zWttVq3fRznJpDoSVd5bTerxo9Yb43VUFwn19fZX9w9y5qeksV7F7SnDeyeK8k0eze5rR2q5avYsOnxZ3aUScQevrXsf4SSeB0p/qtR4vWr0hfndVgfD8+fMr+4f29tRkhCt2TwnOO1mcd/Jodk8zWttVq3fNJ9SA2gTCu+9O489/Hp9jwmg9XrR6Q/zuqgLhkUqD2hRlhCt2TwnOO1mcd/Jodk8zWttVq3fNJ9QAeNOb4EMfgh13jGd7HmrbHL3uWr0hfndVM8u1trZW9g8LFqRmiuWK3VOC804W5508mt3TjNZ21epddPi0uEojNt0UvvvdeLYVQG2bo9ddqzfE764qI5zxP+jlsmQJ9PTURqZCKnZPCc47WZx38mh2TzNa21WrdyKlETVCbZuj112rN8TvrioQluCMceWQokC4YveU4LyTxXknj2b3NKO1XbV6540jXKvSiBqhts3R667VG+J3VxUIN1T6887ixdDbWxuZCqnYPSU472Rx3smj2T3NaG1Xrd6JDJ9WI9S2OXrdtXpD/O6qWmLSv+ItFz8j7F8Z15GK3VOC804W5508mt3TjNZ21epdcEKNOGuEa4TaNkevu1ZviN893Z+OEG1tbZX9w7x59mSwcCHcfXdtpMqkYveU4LyTxXknj2b3NKO1XbV6a64RVtvm6HXX6g3xu6sKhIcrHQptk03s7dAQrFoFjz0Gd94Zv1gZVOyeEpx3sjjv5NHsnma0tqtW70SGT6sRatscve5avSF+d1WB8IIFCyr7h3e/O//xLrvAAQfEJ1QBFbunBOedLM47eTS7pxmt7arVO5Hh02qE2jZHr7tWb4jfPd2fjhC9lXZ8a26GlStrI1MhFbunBOedLM47eTS7pxmt7arVe0ZpRDYLxqgojVDb5uh11+oN8burCoSX+tM7KkSru/NOFuedPJrd04zWdtXqPSMjDLmscMoDYbVtjl53rd4Qv7uqQLizs7PyfzImfpEqqMo9BTjvZHHeyaPZPc1obVet3jMywpAbWzjlpRFq2xy97lq9IX73sj4dInKEiDwuImtE5DNF1jtORIyIrIpPMUdHR0ctNpsIWt2dd7I47+TR7J5mtLarVu8ZE2oEl6U8I6y2zdHrrtUb4ncvGQiLSCNwAXAksCtwoojsGrHefODDwB2xGgao6ipg7tz4RapA69WX804W5508mt3TjNZ21eqdN45wOCOc8kBYbZuj112rN9QnI7w/sMYYs9YYMwFcDhwTsd5XgPOAsRj98qjqKuDqq2GHHeKXqRCtV1/OO1mcd/Jodk8zWttVq3dkjfDEhL1NeWmE2jZHr7tWb6hDRhhYAawLPF7vLZtGRPYBtjDG/LnYhkTkDBFZLSKrN27cyNjYGCMjIwwPDzM+Ps7AwACZTIbe3l6MMXR1dQG56H/t2rUYY+jt7SWTyTAwMMD4+DjDw8OMjIwwNjbG4OAgk5OT9PX1kc1m6e7ogO9+d4ZLT08PU1NT9Pf3MzExwdDQEKOjo4yOjjI0NMTExAT9/f1MTU3R09OT5+Hfdnd3k81m6evrY3JyksHBwYL79Mwzz0TuU1dXV+X71N0d6VOLfVq/fn3F71Ma9qmnp6eq96ne+7R+/frYj70k9unpp59O9PMU5z499dRTFb9PjtL477M2tHpHBsJKMsJq2xy97lq9IX53MSU6k4nI24EjjDHv8x6/GzjAGHOW97gBuBE41RjztIjcBHzCGLO62HZXrVplVq8uusoMpqamaKzmA33zzXDoobnH2SyIVL6dWVC1e51x3snivJOnGncRudsYU5O+EGml0nO21mNCqzfnnQef+QyMjMCFF8JHPgJr1sD229tk0Ic+VG/Dgqhtc/S6a/WG6t0LnbfLyQhvALYIPF7pLfOZD+wO3CQiTwMHAlfXosPc0NBQdf/Y3p7/2L9yTpCq3euM804W5508mt3TjNZ21eqtuTRCbZuj112rN8TvXs6n4y5gBxHZRkRagBOAq/0njTH9xphlxpitjTFbA7cDR5fKCFfDnDlzqvvHcIc5/+eiBKnavc4472Rx3smj2T3NaG1Xrd7TgXBjo7rOcmrbHL3uWr0hfveSgbAxJgOcBVwHPApcYYx5WES+LCJHx2pTggn/6rZSwhnharczC6p2rzPOO1mcd/Jodk8zWttVqzeZDKahwQbBymqE1bY5et21ekP87k3lrGSMuQa4JrTs7ALrHjZ7rWiqrmcJz0tdh4yw1loc550szjt5NLunGa3tqtWbyUlbFgHqJtRQ2+boddfqDfG7p/vTEReLFsH558MWXqlzHQJhh8PhcDhqRiaTC4TDNcKKgx6Ho9aUlRFOC1P+vOnV8OEP28zwf/xHXUojZuVeR5x3sjjv5NHsnma0tqtWbzIZO5kGqCuNUNvm6HXX6g3xu6vKCLe0tMxuA/5Jog4Z4Vm71wnnnSzOO3k0u6cZre2q1TsvI6yss5zaNkevu1ZviN9dVSA864Hs6xgIax2E33kni/NOHs3uaUZru2r1JpPB+AGvsuHT1LY5et21ekP87un+dISYN2/e7DbgX0XUoTRi1u51wnkni/NOHs3uaUZru2r1JpNB/GSPsoyw2jZHr7tWb4jfXVUg3N/fP7sN1DEjPGv3OuG8k8V5J49m9zSjtV21epPJkPUDYGU1wmrbHL3uWr0hfndVgfCSJUtmt4E6BsKzdq8TzjtZnHfyaHZPM1rbVas3mQyN/q+eyoZPU9vm6HXX6g3xu6f70xGis7NzdhvwTxIHHwwbNhRfN2Zm7V4nnHeyOO/k0eyeZrS2q1ZvMhkyIva+suHT1LY5et21ekP87qoC4Y6OjtltwM8IA/zf/81uWxUya/c64byTxXknj2b3NKO1XbV6MzlJU2urva+sNEJtm6PXXas3xO+uKhCe9VVAW1vu/uDg7LZVIVqvvpx3sjjv5NHsnma0tqs6b983k2HSzwgrK41Q1+YBtLpr9QaXEZ7dBjbbLHf/a1+Dvr7Zba8CtF59Oe9kcd7Jo9k9zWhtV1XeDz0Ey5fDXXdBJkOzn+xxGeHE0Oqu1Rte5hnh7u7u2W1g+fL8x488MrvtVcCs3euE804W5508mt3TjNZ2VeX9/PNgDNx+u80I+8uVDZ+mqs1DaHXX6g3xu6sKhBcvXjy7DTSFZpRet25226uAWbvXCeedLM47eTS7pxmt7arKe3zc3j70EGQyNIUzwkom1FDV5iG0umv1hvjd0/3pCDEwMBDvBp99Nt7tFSF294Rw3snivJNHs3ua0dquqrz9QNcLhDP+cmWlEaraPIRWd63eEL+7qkC4vb199hv5y1/s34IFiWaEY3GvA847WZx38mh2TzNa21WVdzAQnpyk0R81QllphKo2D6HVXas3xO+uKhAeGxub/UYOP9z+LV4MCc6sEot7HXDeyeK8k0eze5rR2q6qvP1AeGAAnnqKbKFxhFNeGqGqzUNoddfqDfG7p/vTEaI5OA7wbGlvh5GR+LZXgljdE8R5J4vzTh7N7mlGa7uq8vYDXYAXXkAKzSyX8oywqjYPodVdqzfE764qEM5ms/FtbO5cGB6Ob3sliNU9QZx3sjjv5NHsnma0tqsq72AgDBg/4FVWI6yqzUNoddfqDfG7qwqEjTHxbay9PdFAOFb3BHHeyeK8k0eze5rR2q6qvP1AeN48e+uPjKRsQg1VbR5Cq7tWb4jfPd2fjhBN4eHPZkNUacS6dXDmmbmTR4zE6p4gzjtZnHfyaHZPM1rbVZW3HwjvvTcA4v9kHK4RTnlGWFWbh9DqrtUb4ndXFQiP+2MmxkFUacQZZ8CPfwx//3t8r+MRq3uCOO9kcd7Jo9k9zWhtV1XefqC7774ATPmZX2WlEaraPIRWd63eEL+7qkB47ty58W0sKiOcyUSvGwOxuieI804W5508mt0LISJHiMjjIrJGRD5TZL3jRMSIyKq4HbS2qyrviQkQgT33BKCp0PBpKS+NUNXmIbS6a/WG+N3T/ekIMTg4GN/GojLCft2JPwRNjMTqniDOO1mcd/Jodo9CRBqBC4AjgV2BE0Vk14j15gMfBu6ohYfWdlXlPTEBLS2wxx4ATPrfYcpKI1S1eQit7lq9IX53VYHwokWL4ttYezt0dcGnPpVbVsNAOFb3BHHeyeK8k0ezewH2B9YYY9YaYyaAy4FjItb7CnAeUJMBRbW2qyrv8XEbCO+yC4jQ4mfKlA2fpqrNQ2h11+oN8burCoS7u7vj25gf7H7zm/D88/Z+DQPhWN0TxHkni/NOHs3uBVgBBKfNXO8tm0ZE9gG2MMb8udiGROQMEVktIqs3btzI2NgYIyMjDA8PMz4+zsDAAJlMht7eXowxdHV1AdDZ2Ul3dzddXV0YY+jt7SWTyTAwMMD4+DjDw8OMjIwwNjbG4OAgk5OT9PX1kc1mp9+Pzs7OvNuenh6mpqbo7+9nYmKCoaEhRkdHGR0dZWhoiImJCfr7+5mamqKnpydyG93d3WSzWfr6+picnGRwcHDGPj377LMF9wlI1z5NTJBtaSHb1sbYRz5C76tfzeDgIONemd+UN/HA4MhIqvfpySefrPh9KnbsJblP69evj+3YS3KfnnrqqUQ+T7XYp6eeeqqqY68QUq8hNFatWmVWr15dl9cG4B3vgCuvtPevvhqOOgpe8xq46SY7BfPhh9fPzeFwpBoRudsYE3tdbRyIyNuBI4wx7/Mevxs4wBhzlve4AbgRONUY87SI3AR8whhT9IRc93O2Yyannw7XXAMbNuQvX7sWttsOXv1quPlmeOYZ2HLL+jg6HCmh0HlbVUbYj/pj4ctfhtNOs/cfe8ze+oM016A3ZazuCeK8k8V5J49m9wJsALYIPF7pLfOZD+wO3CQiTwMHAlfH3WFOa7uq8vZrhD2m3ZXVCKtq8xBa3bV6Q/zuqgLhjo6O+Da2yy5w4YX2vp8y97Pjodl64iBW9wRx3snivJNHs3sB7gJ2EJFtRKQFOAG42n/SGNNvjFlmjNnaGLM1cDtwdKmMcKVobVdV3qFAeNpd2fBpqto8hFZ3rd4Qv7uqQNivLYmNhgY7I8/gIPz2t7kAuAYZ4djdE8J5J4vzTh7N7lEYYzLAWcB1wKPAFcaYh0XkyyJydFIeWttVlXcoEJ52VzZ8mqo2D6HVXas3xO+uamqRpUuXxr/RefPgu9+F73wnt6wGGeGauCeA804W5508mt0LYYy5BrgmtOzsAuseVgsHre2qyjsUCE+7K8sIq2rzEFrdtXpD/O7pvkwM0dfXF/9GW1pytcE+Xg/JOKmJewI472Rx3smj2T3NaG1XVd6hQHjaXdnwaaraPIRWd63eEL+7qkB4/vz58W803NsW4BOfgIGBWF+mJu4J4LyTxXknj2b3NKO1XVV5hwLhafdwZ7mUl0aoavMQWt21ekP87un+dIQYCU+JHAdTU9HLY565pCbuCeC8k8V5J49m9zSjtV1VeYcC4Wl3ZRlhVW0eQqu7Vm+I311VINzqz6OeBCtXwk9+EtvmEnWPEeedLM47eTS7pxmt7arK259ZzmPaXdnwaaraPIRWd63eEL+7qkA4482WkxiXXhrbphJ3jwnnnSzOO3k0u6cZre2qyntiAgJBwbR7uLNcyksjVLV5CK3uWr0hfvd0fzpCSA2mPp7Gn6M9yJ57xrb5mrrXEOedLM47eTS7pxmt7arKO1QaMe2urDRCVZuH0Oqu1Rvid1cVCDfU4qr25pvh/POjA+GoZVVSE/cEcN7J4ryTR7N7mtHarqq8Q4HwtLuyjLCqNg+h1V2rN8TvrqolJv0PdZy86lXw4Q/nZpcLMjYGd94JIvDvf8/qZWringDOO1mcd/Jodk8zWttVlXcoEJ4MB76ZjP3+Snn2T1Wbh9DqrtUb4ndXFQi3tbXVbuNjY9HLLrrI3r/hhlltvqbuNcR5J4vzTh7N7mlGa7uq8g4FwtPuwYxZyssiQFmbh9DqrtUb4ndXFQgPDw/X/kV+8Yvc/bGx3HjCCxbMarOJuNcA550szjt5NLunGa3tqso7FAhPuwezwAoCYVVtHkKru1ZviN+9rEBYRI4QkcdFZI2IfCbi+TNF5EERuU9E/ikiu8Zq6bFglsFoWeyzT+7+2FhuPOGm2c1GnYh7DXDeyeK8k0eze5rR2q6qvEOBcJ67HwArqAVV1eYhtLpr9Yb43Ut+QkSkEbgAOBLYFTgxItC9zBizhzFmL+AbwLdjtfTo7e2txWYtDzwA998PwZT7o4/CNdfY+7McwLmm7jXEeSeL804eze5pRmu7qvIOBcJ57n4grCAjrKrNQ2h11+oN8buXk+bcH1hjjFkLICKXA8cAj/grGGOC8xG3AyZOSZ+lS5fWYrOWPfawt88/n1v20EO5+7NMxdfUvYY472Rx3smj2T3NaG1XNd5TU/YvEAjnuYdHkEgxato8Aq3uWr0hfvdyfjNZAawLPF7vLctDRD4oIk9iM8IfitqQiJwhIqtFZPXGjRsZGxtjZGSE4eFhxsfHGRgYIJPJ0NvbizGGrq4uADo7OwFYs2YNxhh6e3vJZDIMDAwwPj7O8PAwIyMjjI2NMTg4yOTkJH19fWSzWbq7u/O24d/29PQwNTVFf38/ExMTDA0NMTo6yqgpEMOPjOS2sWEDGEN3dzfZbJa+vj4mJycZHBwsuE9r166N3Keurq7a79PoKENDQ0xMTNDf38/U1BQ9PT2R2wjv0zPPPFPx+5SGffL/ovap2PtU73169tlnq3qf6r1Pa9eujf3YS2qfnnzyyYrfJ0dp/HbUhhpvv+d8IBDOc1dUGqGmzSPQ6q7VG+J3F1Mo8PNXEHk7cIQx5n3e43cDBxhjziqw/knA4caY9xTb7qpVq8zq1aurs64lIyPQ3p57vM8+cM898N//DV/6EqxbB1tuaadfft/76qbpcDjqh4jcbYxZVW+PJEntOfvlSn8/LFoE3/42fPSjM59fuNB29l62DBQHPQ5HXBQ6b5dzqbgB2CLweKW3rBCXA8dWZFcmiVzBhOewXrTI1g37NcL3329vTz/dzvNeJlqvvpx3sjjv5NHsnma0tqsa74kJe1sqI6ygNEJNm0eg1V2rN8TvXk4gfBewg4hsIyItwAnA1cEVRGSHwMM3A7ObfaIAHR0dtdhsPuGTxoIFNkPs1wj7o0iAzRCXSUdbG/zXf826013SJNLmNcB5J4tWb9Dtnma0tqsa74hAOM9dUY2wmjaPQKu7Vm+I371kIGyMyQBnAdcBjwJXGGMeFpEvi8jR3mpnicjDInIf8DGgaFlEtfi1hTXnuefgpJPs/fnz7VTLfgA7EOgXGOxYV4LRc86BH/zA/ikisTaPGeedLFq9Qbd7mtHarmq8IwLhPHdFNcJq2jwCre5avSF+97IGxzXGXANcE1p2duD+h2O1KsDChQuTeBnYbDPwrziCGeHeXvA6CwGQzZa9yVZ/cPMK/icNJNbmMeO8k0WrN+h2TzNa21WNd0QgnOeuqDRCTZtHoNVdqzfE757+S8UAQ0NDyb3YypX21hiYM8cGwkuWwOc/n1tnasrePvssXH550c1N+ietlM/5HibRNo8R550sWr1Bt3ua0dquarwjAuE8d0WlEWraPAKt7lq9IX53VYHwnDlzknsxPyPc12cD4SeemLnO1JQNlA86CE48MZftvfpq+Mc/8lZt8k9GygLhRNs8Rpx3smj1Bt3uaUZru6rxjgiE89wVlUaoafMItLpr9Yb43dP/CQkw4X/wk8BPvff321Ej1qyZuc7UlB265rnn7GN/XMdjjoHDDstfNZOxd5QFwom2eYw472TR6g263dOM1nZV4x0RCOe5K8oIq2nzCLS6a/WG+N1VBcKNSX6gV3lDzZ14os0IRzE1BRdckHvsB8I+2awNiv/yF8QPgJUFwom2eYw472TR6g263dOM1nZV4x0RCOe5K6oRVtPmEWh11+oN8burCoQTZeVKG8i+6102IxxFJmP/fMKB8PCwLZM48kjEn7hEWSDscDgcjhQSEQjnoag0wuGoJ6o+IVN+57Sk8IPWYhnhYPAbDoQDj7N+/bCyQDjxNo8J550sWr1Bt3ua0dquarz9CZ0CgXCeu6LSCDVtHoFWd63eEL+7qkC4pdCVb60plBEOB8Kvf72djtkn8FyjsgDYp25tPkucd7Jo9Qbd7mlGa7uq8fYzwoHZUPPcFZVGqGnzCLS6a/WG+N1VBcKjo6P1eeFyM8IPPghHHJF7HHgu499X9jNV3dp8ljjvZNHqDbrd04zWdlXjHVEakefuf9co+M5R0+YRaHXX6g3xu6f/ExJg3rx59Xnh5mZ7+/nPz5xQI1gjDBCcAzsQCDf7JytlmeG6tfkscd7JotUbdLunGa3tqsY7IhDOc1eUEVbT5hFoddfqDfG7qwqE+/v76/PC/gln2TI7qYZPOCMcJvDchD9Fs7JAuG5tPkucd7Jo9Qbd7mlGa7uq8Y4IhPPcFdUIq2nzCLS6a/WG+N1VBcJLgkFokoyN2du5c/OXd3WVHQi3+SclZYFw3dp8ljjvZNHqDbrd04zWdlXjHREI57krGjVCTZtHoNVdqzfE757+T0iAzmDZQZL4vXPDneYefrj4/wWmARxTevVVtzafJc47WbR6g273NKO1XdV4RwTCee6KSiPUtHkEWt21ekP87qoC4Q5/2uOk8TPChUaPKMTAwPTdNj8TrGzIkrq1+Sxx3smi1Rt0u6cZre2qxjsiEM5zV1QaoabNI9DqrtUb4ndXFQjX7QomYpiaggRT9oFAeHxw0N4Jd65LOVqvGp13smj1Bt3uaUZru6rxLjcjrKA0Qk2bR6DVXas3xO/eFOvWakzdrmC++11YsCB/aLRCzJ8PPT32fiAQng6hMxkYHISnnoJXvCJ21bjRetXovJNFqzfodk8zWttVjffEhO1zEsj4uoxw8mh11+oNL/OMcHdw6LIk2WoruPTS8jLC8+fn7vtZYGBieNjemZqy0zbvuWeu5CLF1K3NZ4nzThat3qDbPc1obVc13uPjNhsc6ICd566oRlhNm0eg1V2rN8TvrioQXrx4cb0Vovn613P3g+Pb+cEv0GyMvdPfD6tX2/vr1ycgNztS2+YlcN7JotUbdLunGa3tqsZ7YmJGcibPXVFGWE2bR6DVXas3xO+uKhAeCJQapIp9983dDwbCn/vc9N0pfwSJb34zVzrx7LMJyM2O1LZ5CZx3smj1Bt3uaUZru6rxnpjIqw+GkLuiGmE1bR6BVnet3hC/e/o/IQHa29vrrRBNcHzhAjOeNAbLIPzh2B59FPxMsc+6dblOECkgtW1eAuedLFq9Qbd7mtHarmq8IwLhPHdFpRFq2jwCre5avSF+d1WB8Fhaa2qDb0qBIdaMP7NckLPOgu98J/d4fBy23BLe+9789SYmYMOGGEQrJ7VtXgLnnSxavUG3e5rR2q5qvCMC4Tx3RaURato8Aq3uWr0hfndVgXBzc3O9FSzh0SOirsJDyOho9LauuMLeTk3B2rX2/pVX5q9zxhmwcmVdOtelps0rxHkni1Zv0O2eZrS2a929H30UXnyx9HoRgXCeu6LSiLq3+SzQ6q7VG+J3T/8nJEA2m623guXaa2HjxtzjYCDcVGBEuqiMMMAdd8CnPw3f+hbsuqtdFp62+Zpr7G1vr7197LFc0FxjUtPmFeK8k0WrN+h2TzNa27Xu3sccA1/8Yun1IgLhPHdFGeG6t/ks0Oqu1Rvid1cVCJtwPW09CV6RBHvuVhoIA3zjG3DTTbnH4f30h2TzO9ntsgtst13ZqrMhVW1eAc47WbR6g273NKO1XevuvXEjBCcMmJyEr30Nwr8qRgTCee6KaoTr3uazQKu7Vm+I311VINxUKMisB8FA2L+/cGHBQFhKTa1cbIBoPxBOYty//v68QDxVbV4BzjtZauL99NNw553xbzeE1jZPO1rbta7e2aydiCkwBj233Qaf/zzceGP+uhGBcJ67nxFWUBqh9VgBve5avSF+9/R/QgKM+6MtpIFgIDx/Ppx3nh0fuNo36PHH8x9PTtoZ7SYnc4HwP/85s2wiTh5/HBYtgosvho9+FH74w3S1eQUk4n3LLbDbbsWz/RXi2jvANtvAAQfEv90QWts87Wht17p6Dw/bREQwEO7vt7d9ffnrRgTCee6KMsJajxXQ667VG+J3V3VJMDc4TFm9CRdrf+pT9rbaQDic+frhD+EjH7Gd6PxA+POfhxdeqG775fDQQ/b22mvht78FYO7pp9fu9WpIIsfKhz8MjzxiO7cEx5KeBak6xitAqzfodk8zWtu1rt5+0BscJ9UPiqMC4ZBrnruiQFjrsQJ63bV6Q/zuqjLCg8Gr5HoTmNYyj2pPOuGaFz/L+OKLsGBBbnn457E48ccvDmQZUtXmFZCIt1/uEuMXjWvv5NHsnma0tmtdvf0AOOjgL/ODZJ/x8Rkzy+W5KyqN0HqsgF53rd4Qv3v6PyEBFi1aVG+F0hx5ZDzb8ccjHhvLzz5nMvFsP4qIQLjmbT46ai8qvv3tWDebyLFSg0BYxTEegVZv0O2eZrS2a129KwmEI0oj8twVZYS1Hiug112rN8TvrioQ7k6is9hsef3rc6M7gA1kTzml8u34V/rj4/l1wcFOd3EHxRGBcM3b3P+575vfLL5eVxd84Qv5+1+ERI4Vv/1j/KJRcYxHoNUbdLunGa3tWldvP9gdGsr9SlisNCIUCOe5Kxo+TeuxAnrdtXpD/O6qAuFly5bVW6E8/JpesAHtN78Jb3hDZdv49a/t7dhYfiC8Zk3u/tBQ9Y5R+AXogZNrzdvcP1mXGhfwrLPg3HPhuuvK2uy0d29v7aas9gPhGMc0VHOMh9DqDbrd04zWdq2rt5/9zWZz5XEVZITz3BVNqKH1WAG97lq9IX739H9CAnQGx1ZMM+Er8E02ofOXv6xsG//4h70dGyscyMVd4xPxOjVvcz/rUSqY9MfQLDOonfZesgTe9rYq5UrgB8IxZubLau8DD4T3vz+214wDNZ/NCDS7pxmt7VpX76hOchUEwnnuijLCWo8V0Ouu1Rvid1cVCHcUG2s3TUR0pOvo6ICvf734/117ba422CdcGhEk7oyw/zqBoLTmbe6XOpQKhMvNHHvkef/5z1WIlYHvHmMgXFZ733EHXHhhbK8ZB2o+mxFodi+EiBwhIo+LyBoR+UzE8x8TkUdE5AERuUFEtorbQWu71tU7GOz6AbB/W0ZpRJ67ohphrccK6HXX6g3xu6sKhLu6uuqtUDVdXV12KuWnn4YvfSl6pcMPhx//OH/Z739fuBwgGAhv3AgbNsxO0s+2BupwI9tcBE47bXav5eMHkaVmivEvLsqcUSaRY6UGGWGtx3gqvY85Bn7yk5KrpdJ9FohII3ABcCSwK3CiiOwaWu1eYJUx5hXAlcA34vbQ2q519Y7KCPu3ZWSE89wVlUZoPVZAr7tWb4jfPf2fkABLly6tt0LVTLtvtRX8939HryQCc+aUv9Hubvj3v+395cth5Up7ciyzQxl9fXDrrbnHfo1woPxg6dKlduxiEbj++ty6F19cvmeYm26Cv//d3q9RRnjp0qWx1u5O89e/wve/b+/XICOs6hi/8Ua45BKgxt7Vvo9XXw1nnDFz+X775XXOVNXm5bE/sMYYs9YYMwFcDhwTXMEY83djjD8TzO3AyrgltLZrXb2DwW64NKKMjHCeu6LSCK3HCuh11+oN8burCoT7wicCRcxwLzQgdCUDRR95JOy4I7z1rbllra1w9NHl/f9BB8HBB9sJISBXhzs8PL1KX18f3HyzffDDH87chjE2QM5mbWnFs8+Wft3XvAZe+1p7v9wOZ/5JvVCQ/8ADtjNd0LvcC4JKOPxw+NCH7P0aZIRVHeOvex28971Ajb3jHh3lkUfgySenH6pq8/JYAawLPF7vLSvEacC1cUtobde6es+yRjjPXVFphNZjBfS6a/WG+N1VBcLzg6MxpIFTT7VDekXxxjfC1742/XCG+yOP5O5//evwi1/Y+5VkhH1+//v8x9dcU3jd226zIykAPPaYvfV/ZvB7KQc64c2fPz9XgjF//szShMsusyNiXHKJHdlhq61mnrCL4Qc5g4Nw1VUzn3/oIdtx0C+NGBuL3s4BB+QNrzZ//vzaj7lcg4xwTY7xTAbuuiv+7QYo2/vOO3MXVuVy6qnwyU9W7BSJMfY4D9Tdp+68kiAicjKwCogcv1BEzhCR1SKyeuPGjYyNjTEyMsLw8DDj4+MMDAyQyWTo7e3FGDP9k2VnZyfz58+nq6sLYwy9vb1kMhkGBgYYHx9neHiYkZERxsbGGBwcZHJykr6+PrLZ7PTQSH6HGP+2p6eHqakp+vv7mZiYYGhoiNHRUUZHRxkaGmJiYoL+/n6mpqbo8YawDG+ju7ubbDZLX18fk5OTDA4OztgnoOA+ATXdp0xPD8abnXSss5OJiQmyfiDsHbednZ323DM1BS0tefvU1tY2vU+T3vkpk80WfZ9qvU/lvE9+u1fyPqVln0QktmMvyX3KZDKJfJ5qsU+T3vm70mOvIMaYuvztu+++plL6+/sr/p+0EOluv5aNmZjILbv11tzy2fxF4W/7wx/Of/1rr7WPjz/ePj744Onn+vv7jTn/fPv4gx80Zmws93+PPmrMf/6nvf+d7xiz+eb2/gMP2NfKZqM9go4PPFDc219+wgn29n//t/g2R0dz7T0wULw9KuGhh4w555zotvbbLwZKHuPZbOX79OlP596Xann/+4059dT8ZQGPsj+b5bpfcUV5x3QhCrXTyIhddsop04uqOa8Aq02dzp2l/oCDgOsCjz8LfDZivdcDjwKblLPdSs/ZWs/XdfV+wxuM2XJLe4z+6Ed22YIFxjQ12WWdnXaZfxx//et5/57n/pnP2HW+/OWE5KtH67FijF53rd7GVO9e6LytKiPcGppOUhNF3YMzx1WTEQ4T7hxx8MFw1FFwww32sV8C4eOXQjz/vL0NXDm1trbmHs+bl6sjBlta8fTT9n4wq/apT8ErXwl/+ENp13Kzqf4+hd0LbK+1tTXejPChhxau7S5UgpHNVjyGcd5x8vzz8PnP55eNVLNP//qXvQ1O9PKrX8Gll5a/jR//eLoeOIrYPpvPPAOf/Swcf/zstlOo1Mb/1SPQjprPKwW4C9hBRLYRkRbgBODq4AoisjfwY+BoY8zGWkhobde6eg8M2L4eYH8ly2bt7QqvssX/tS1i8iMIuSuqEdZ6rIBed63eEL+7qkA4U8ufumtM4u7B4OzWW+FPf8oFvPfdB7/9be5EWSQQzmQyuVKJlpb80oS+PjvkW3AbAI8/bm/LGeuv3Dpe3/Vb3yq+nveTSSaTKTzsXDUELwDCFHpv3/Oe3AyBZZJ3nLznPba85vbbc8uqmRzEf8+CF1knnWS3H6SzE7bbLlczDvC+90UOB1jUO4qnny7ehj4nn1x6mMFyKPTe+8dpwFfzeSUKY0wGOAu4DpvxvcIY87CIfFlE/A4E3wTmAb8RkftE5OoCm6sare1aV+/+fthsM/uZGxiwx6sxsMUWueehYCCc566oRljrsQJ63bV6Q/zuTbFurcZIGV/IaaVs9ziudLJZWLcOtt46v6bXz4bdeSe8/e25AMcPDl54wd4GaoRFJJdJvOSS/MxvkKGh3Pb8gzScvc1m4Zxzco932QW+973y9wnguefsMHF+hiSMFwCJSLwZ4WLvX6HX8eu+K3qZwOv4X3rBDH85wWQY/30I/vIQxR/+AGvX2ouNiy6yy37607JeoujxPT4O22xTXpY3rrGxCwXC/mcg8Lzm80ohjDHXANeElp0duP/6Wjtobde6eg8MwKJF9te3wcHcudgPhP1OQgUC4Tx3RcOnaT1WQK+7Vm+I372sT0gaBmcHaFDwgS5EpHvUsl12sT9DL1sG1QwRcsghdrv+z9jB3pXBrC3kguThYRuA+EFIIBBuaGjIPV63zpY9RBEMYPyTdLhj2z33wJe/nHv82GNwyy0ldwnIDwCLBUteUNrQ0BBfIDw6WnwWvxgD7rzjxA/WggHsbALhqOx70L3UyBxFKPrZ9Pfjj3/MLatmRI/+/txwf2ecUXx0lFKBcGC/NZ9X0ozWdq2r98AALFhgEw6Dg7kRI8rMCOe5KyqN0HqsgF53rd4Qv3vJraVlcHZguqegRiLd16/P/xna54wz7M/UXV32p2mwNb5+GQLYk9vRR9uTZpArroBdd4W777aPg5NseL1HZzA0lB8wBzK5k5OTMwPoQtvwefHFGdsBZs6aB3bYs0IEs9nBoLrYqBReO09OTsYXoP7nfxZ/vtTrvPiiHbu2jKHlJl94AZqa7FjL/pdd8Oq3mkDYb7soT/+9gtwXZrGh7Pbee+Z4ppT4bEYNkVdN5vfYY229++ionSgjGFjPFIpeHhEIaz6vpBmt7Vo376kp+7lYuLBwIFwiI5znrqg0QuuxAnrdtXpD/O7lhNWpGJwdoC0qkFJCpPtmm8HOOxf/R79UYtdd4Ygjcsv7++2waQ8+CHvuaZedcYbd5i675ALsYPAbHmbNx88IR3k3N1ceCPt86Uv5GeSoQCzcoS6YKfSDFsgfX7OMQLitra14gPrlL9sAs5zM5P33F3/+wQeLt9Gll8Lq1fDd75Z8qTmPPGKdzj0392UX/NDPJiOcydjSkuBQat/+tnWD8jLC992Xf0HmUfSz6b8PQfdCGfZiP3n5tdLlvGelaoQDz2s+r6QZre1aN2//MxHMCIdLI0pkhPPc/c+zgsyf1mMF9Lpr9Yb43cv5hMQ2OPtsxqQE2LBhA8boGpPS36fnn38+cp9KjaGX8YKYqSVL8geRnjOHzq4u2HJLhl/3OgDGpqaYmppibOutMU89xVBPD+PljOk7PExvgWzlxg0byBYrC/AZGmIqmMH1+eY3p/dpNBjMFqBz/XoABi68MJfVBqZ6ejDewT95222M/+Y39n168kkmTjopt4FMhs7OToaHh+nZmOsMH36fjFerPNzXN/0+Zc86i+HvfW/m+1Qq8DrvPDIf+Uj+sefPnAcMeRnZUe/9K3bs9fnjmA4NYfxg7QMfmA4Qe/wOjRH7VOjYM97r93d3ww47wP7759y//W3Ybz8ymQwj/mtPTEx/nkzoi9ZuqH/6+PV57rnnpvdp8s47Gf3tb6f3aThq8PPBwcjPU/AIMosW5f2L8QLqTCCgznuffvADJletwkxNMfqDH0yvE/w8TXgu2cA54rnnnsvzKOcc4SjNcDkX0Cmkbt7++TGqNMIfSaJEIJznrigjrPVYAb3uWr0hfvdYO8sFBmc/NOp5Y8yFwIUAq1atMuGo3h8SY/HixQAsW7YMgI6ODgC23HJLRGT6+QVeWUBwKA1/m4u8L1F/Kj5/G/7tkiVLAFi4cCEALRFf+P4yf93wNvxt+6/VHNEZyXdbuXIlIjJjn/zHBffJ+9JtXL58+nUAaGiY3ka759E2Zw40NtK4zTaQzTLvz3+2P7NF0dSUy9QND7O4QEeqzffYAynni39oiMYCmYcF994LW25Z1gm5o6UFrrySBe9/f97yxqEh2/nvscdo9oYxazUG3vUuO5Wuz+QkHR0dZLNZGgJlIw0NDfnvk/czfXtbG7S22va+4ALaAT70ofz3qYwpfptefHF6YoZFixbl1a/O896DOQ0NcPXVLNl5Z1iyJPLYa/Xe06bJyVzW8p577G0mw5L29sL7FCJ8DC1sb8/Psgf9m5po8rbdJEKTP8PhnDkzR6ro758+9gC46iq2OOYYGhoa7D4dcADNkCttieoAeuWVdHzxi0Do8xRoa1myJK8MQ7zjNXjSynufPv1pmkdG4O9/Z8555+XaoaUl1xZ+DfnU1HTbbeFl26o5RzgKsyBctqWEunn7Qe7ChTYYfvrpXCC8eLHtQFeiNCLPXVGNsNZjBfS6a/WG+N3LyQhvALYIPF7pLctDRF4PfB47LmUVv9+WptefEU0hVbv7JQeh7Fge/gWFn7n0ggNOOQXuuCP6f/bZJ3e/SGlEWUEw2BN2oZ+1DzsMtt02N6NdMT70IXjHO2Yu37gRli/PX2bMzGytFzz29vbm/zxeqBa5yL5PU0YgzDbbWJ8//nHm+MHeTFEMD8Mxx9gxlsMMDcHttzPoz/I3OjozAB0cLF0aYYx9H770pZnPlaplDtcI//nP0WUo4WVve1vx4zuqTOE3v4lu9+AyLxCdQaEM/R572Nunnspf7tdI/+AHuVFKAm2h+bySZrS2a928wxnhgYHcsvnz7XdAiYxwnruiUSO0Hiug112rN8TvXs4nJBWDs0MuA6uRqt2Dk1kUws92+QFM8LWuu27m+jvtBJtumns8PJxfn1YNfX2lx5s96qjS2/HHIA4zOgqHH56/bGJi5pTPH/oQPPOMbe9g4OeVjwD5wdby5bauuhhRJR9hxsbg//7PZoIvuig/iPXvP/TQzNf3OeEEOOggFvpB4+jozAByYCA/o3vFFbkJTXz854PD1PmU6mDgf2HefbetO3/LW6LXiyh1KHp8RwXgDz5oO96FCXaKXBnoatAUyAMHt7dwYa7Dn39BGA7U/fb/r/+yQwdCXltoPq+kGa3tWjfvYEY4XCO8YIFdHg6EQ7+25LkrKo3QeqyAXnet3hC/e8lAOC2DswMz6hI1UbW7HxgUC4T9n8X9QNjPCIMdeSLMY4/lZxKCWdFimedixHWFVixYO/RQCJQGMDQ0M0j917/gve+17R0MmILBZ6jsIm8MZLAz8K1fn9t2OZ2zRkdzQalX5zzjtR980N6Oj+dGA/G58UYABp98Mre9cFu89735FwPvfCcccED+On7nyNZW+97/x3/kniv1Hvlt8NRTxUfziMgSd3Z22iAz6jgv9J6uWWNvjbFDBo6M5F9AbBH4ISpYRhV8XwcGcp3//GA5HKhHTUIS2Ibm80qa0dqudfMuVCPc0mI/zwsX5o5t/5ehUEY4z11RaYTWYwX0umv1hvjdy/rNxBhzjTFmR2PMdsaYc71lZxtjrvbuv94Ys9wYs5f3V2SAz+rJq0tURtXuP/sZnH467Ltv4XXCvf2DV0vr1uWv++Y329tgTWkwEPZqlSsmqkNUNRSbOW3OnPzZ0YaGossWslnb3sGAKRiM+cFmIV7/ehuEffOb9svo3/8u7T06mnu98BdPVGF/eKIKrwRlfnByk/D/BTrgTbNxo/0zxgavfiDc3m6HffvZz/LXLUaxgP/AA3P3I/an47nnbFAe7Ijns/vuxV/3j3+EM8+0zsETXDAQDr5/4Qyzf5HoHzvhY/Gyy2a+ZmAbms8raUZru9bNOxwIj4/bz7M/iVEZpRF57opKI7QeK6DXXas3xO+e/k9IgJflFcxOO8GFF+ayXQ8+mD/8FeROeOEaYZgZKP7ud/Y2GAg/8gj4nYuqzQiPjMQzpXGxbbS0zAyEo8oWmptnZoT9tlmzpnDddJhf/Qq8Dl0lCQbCV4d+ECk0ZXC4Mxww+swz5b1ekC23tIH1nntaZ7Dvuz/5hE+xY3DePJthjmLnnW3pho8/7WuQvfayt+FSjY99rJR9bubCMIUC4XDA7tex+7+ehLf3kY/MrK0ObE/zeSXNaG3XunmHSyPADnfol6sFM8IFAmGXEU4ere5avaFOGeG04K5gsNm1Vavyl/knPD/obW2Fm2+O/n//xBkMhMfGctnCQpNuvOtdpd0CQ3tVTRyB8OrVdDz8cHRt6ic+UZlPgVEWZhAsZQgEtmVtO5CxnFNNZn183I7vC7Y0BOwXpjcs2DTFTh6lhqMJl9KUOzPcd75Tep3w+7T99rDVVvm128ELunAHTv+xH+xGZb7Xrp35mi+8AFNTqs8raUZru9Y1Iyxifxnxg98NG/ID4WoywgoCYa3HCuh11+oNL/OMcE+hzJECauoezggDvOpVxf/HP4GGfzbzO3SFedOb8ie1CBLM3M2WSgLhc8+NDoT7+uA1r5kZYF155cwgqhgixWuzgwwOwv/7f+VvG3JZ5MCEHZngTIBvfWv52/Lfx6iacJ9qr6KNmRkI33BD6f8rZ7QNmPk+nXqqzSxHDbsGtmQlSDgjHJwtz+f7389/3NVlA+1PfEL1eSXNaG3Xunn399ugVySXEV6/PhcI+6URxhQMhPPcFZVGaD1WQK+7Vm+I3z39n5AACwuNiauAmrqXMzVuGD8jHB4bNZxt9lm8GPyxZYP8+c92lISo9b//fdhkk/KdoLJA+I9/LN4BLLytBx+sPBAOds4rRrhcpRw+/nH7s/31108vagpmkys5Zvz3/okn8peffXZuxIw//alyR5gZCPf05M9yWIhyS2XC65Uar/cXv8h/7HU0nM4IRwXCP/xh/mP/ou5nP1N9XkkzWtu1bt4DA7nPvB8IB2uEFy60n5Xg0Iqhz0qeu6LSCK3HCuh11+oN8burCoSHSo33mmJq6l7O1Lhh/EA4PBFDoZKKJUuiT6h77glveIMdKxhynfGWLoWzzsoPXMuhWGe51taZwX5g9rkZRHWqCg7PVYp77oGvfrX89SvlssvgggsKPx8cMqwUUQH+llva8YTDgWOlRAXC5VDuRUQ4EPYzweXMaAhw8cW2Q6P/3laS+e7vV31eSTNa2zV2766u6I6uYQYGctlfP/iF/NIIsFnhAoFwnrui0gitxwroddfqDfG7qwqE51QaVKWImrr7WdxCnZ2i8E+g4ezbnDk2oxYeWaHQaBKtrTZz6tfsbLedvfUD1kqCOSgeqLa0VBbIhgPhsbHK/j+KN72p8HNtbfkTlcyWArP9RRJVy7z55va9qfQ9CBMOhMutmy73wqxQIBxVz16IgYHSk40UQPN5Jc1obdfYvb/6VTsSTanp7vv7Z2aEIb80wl+vQCCc5+4nSBSURmg9VkCvu1ZviN89/Z+QABPFsoUpp6bu221ng5XjjstfXqxOOCojvN9+9naTTWxnpSCFAmH/ROxnJP1JEPwgKM5sREtL7nW+9rXS6/sB1je/aYPBP/whN5ZvIQqVhvgUGwVhp50K17VWw2wzwv7Yu8Ht9PXljy1cDsbE+2V6/vn2dpNN7Bd6odKIV7/aThpSToe7qamqL3I0n1fSjNZ2jd37H/+wiYFAX4BICmWEg6URYD/DBQLhPHdFGWGtxwroddfqDfG7qwqEGxV8oAtRF/dwh6YVK3L3/QB4221zy669Nnc/7FtoWDX/ROxngP3tnX569HZmQ3NzLuALT7ccxSmn2Nu3v90GhcXKKHyiZuILEv4A9vfDBz9o7++4Y+Hs5c9/bjsiFpo2OIpKOiFGZWmjAuGFC0vX4EYR9T+vfW3l2wFbMvHBD9q2a22deVHjX0yI2Om2o0oszj03/7E//XQVtWOazytpRmu7xurd358LgEuNJuN3loP8GT4LlUaIzDi/5rkrqhHWeqyAXnet3hC/u6pA2FEhwaBs40Z49NHc4ze+0d6efba93XLL/Ik4AJYuxSxbZidKKBTg+QHS979ve/u/5S02w/e5z9nlcR6wIpUFwj5NTfkzkxWj1IQi4UB4wQI4+GB7v7Exup0WLLBB+W672XKFcvi//4OPfrS8dQH+9reZy6ICYais5AJsRviII+C22+C002Zuv1y+/W17u3y5/V+/lCGczQ4H3VG+4X3q6bGewanDHY56c+utuZFtSgXCUZ3lYGZpRF+f/ez4ZWmFUDRqhMNRT1R9QqYq6QyWMurm/rrX2UxlR0f+yXX//W0W9/DDbSbY73kfpKuL4aeegttvz1/e2prL2vkn2W23tbOYtbbaIMU/Qfsn49/8Jp79qSYQhvKzoMW+WIK10EHe/nY7+sM550QHbcFtljuyx8kn5wd7wZndyiXOQFjEOnzrWzO3Xy5veYsda/otbyn+v+H3oJxA+Pjj7W3wuAh3RPzCFyJfbipqvGnHrNF6vo7V++ab7bF62GHlBcJ+0NvcnDvHFsoIR5zT8twVlUZoPVZAr7tWb4jfXVUg3FLNT7opoW7u118Pjz8e/ZwfcBxxRK6TW4gZ3uvW2UHe77tv5jTBUfgn4ahM65FHlv7/MH4daLmB8G672fFiZzsF9G9/C489Bq98Jdx0U/5zzc22jrVQaUQwsCvnAxxVx3zDDZWPA+x/kYa/CEsdi+Eyi+BYzcHSg0oD4eZmm7EVKV5LHR4bOmrYvkJf7sGMe/Dn5Z//vOB+6z2rpBut5+tYvW+5Bfbd1/bXePTRwh1N/WHRgsesn7gI1wjff7+dQXKbbYq7KyqN0HqsgF53rd4Qv7uqQHi0kjFgU4ZW9xneK1faEoqddy6v05V/Eo46cIMzh73//TOff+ABePjh/GV//asdHSMYkF1wgc0yRnHttdahnJEOPv7xws+97W020AU49FB7/6CDZq4XR0Y4XBO7YoUNBoNTZ5eDH3SXk2ENEu6RGzVpCVQ+GkVw/WJBdPj1ospJ/OMq7HrIIbn7wfY65ZSCvqOKB5ZPMy+Zc171G7Lji7/61XY0mWy2cGddf1zr4HnND4D94HjePBvc/u//2tIIfzr1Qu6KMsJajxXQ667VG+J3VxUIzyt3lq8UotV91t7BOrU1a2wphs/WW+fu/+hHM/93xQrYddf8Za97HVx+eX4w96pX2ck1Rkbs2MVBwnXPhdh//8Izw0V1Wnv8cVv/FyYqyAzW6PnB6SteUdglGAg/+mjp3uZ+Z70whWYCrPRqOq5AONg2xTLC4YuFqEDYD+7f85785Xvtlbu/xx75z/ltH3rteQoCBY28bM95PnfeaUsYXvWq3LCKhcoj/M9qVEbYXyaS6+z6+9/DLrsUd/d/NVMwla7WYwX0umv1hvjdVQXC/aXGYUwxWt1n7R2c/nm77ezkG2AzeWecEf0/P/2pDTSLjbAQDKr8wG7OHFu6EKTc8QaLBYfBToal2GmnmcuiMsI/+UnhbQQD4Z13Lh3MF2qnQhNSxPWzUqUBZDBwLva+hAPhqC9yPzgPO2y2mR2x5P3vn5l19odpC51EBzduLCLtqBb157zu7sIXgeVwyy32s3/IIfZiesmSwoGwPzV6MCMcNYLEF79oy7QOPbS4O9jg+7nnos9JKUPrsQJ63bV6Q/zusxxpP1mWVDL0VMrQ6j5r72AgDLmg8P3vL5wV3HzzXBlCqe1C/nZOOMFmYU49Nf/1SlEsOKxkbOAvftEGrmvXwjHH2CHGojLCxUoDKh0svNB7VCgjXE5nudtvh2eftZ3QCgUDlQbCwdctNBwf5Jc3FHodP1gWgaOPhquvto833RQuvNDeD18IBAPh7u6cSpxjPzumUX3O6+62ZWAXXwwnnljdhm65BXbfPdc/Yp994N57o9f9/e/teeKAA3LLwjXCUHIkmRltHiw/SzFajxXQ667VG+J3V5UR7qy0s1CK0Oo+a28/yPADQD8ozGYLB2Tl/JQXDHCDgYzIzJ/Lg4Q7uvkUC4QrCfiamuBDH7KTRvjbjMoIRwVfn/qUva10uKNCPxOVGwhHlWkccEBuTOhCdc2zqREuFAhfdFF0KUr4tfzgXAQ+//nc8mDHuvB76gfCwcAC6N2wobCzo2pUn/OeeMJ2zC005Xw5PPJI/kyT++xja4TDQzBms3a4xDe+Mb8MKFwaUa67QrR6g153rd4Qv7uqQLhDQa1TIbS6z9r7pz+FM8/M/ZTnB4XGFA6kKn3NSjJ6O+xQ+TbKzSqHiRrHs1hG+LzzSv8Ue9VVdoY8n2efjZ5wYtGiwrPvnXSSzbpedZWdSS+q1hlKZ45nUxpRKBAuNV61j99ODQ3R+x/clj/xR4FAeHGlo184ykL1Oe/pp+2DQhncUkxO2rKELbfMLdtnHxsEH3ecvf+Vr9jlf/+7HY0nfAEflREux10hWr1Br7tWb4jfXVVpRGdnp9o3T6v7rL232AJ++MPcYz8oNKb8jPDnPz8zixIkIogdf8MbaA0OL3TvvXYM20LBdy2GkvEDxXIzwpTR3scea28PPhj+9S/7JRkVCPb25j/+2c9yHQ+XLLE/2wa3d+65+ZlVyLXVbEsjvvUt6xhs41IzFUYtD4784bdjQ0PhjHhDg53Nz58uvECNcN/zz1PAxjELVJ/z/ED4gQfsxWulF33PPWeP0WAgfMghNrv7wAP29uyzbUD861/b2uBjjsnfxvLltsyqgtdW3eYKvUGvu1ZviN9dVSCs9U0Dve6xe/s//W2xReESgHCN7Fe/WnybEUFl61//mr9gr73sX9RQWZtvDp/9bPHXqAY/kIwaR7jAvpfd3n/8o83kLlo0MxD2a2SD+DXThfjc5yoPhIMXFdtua+uiFy+2Qfgxx+Qy19tsA299a/7/zjYjHKwRLpQRBjuOtE+BQNjVCNcG1ee8Z56xD0ZHbcfd8Og1pVi3zt4GA+EVK+x45iK27OLAA20WeHTUTqATPu994hMV1yerbnOlaHXX6g3xu6sqjegOdHDRhlb32L3f9jYbIAXH7P3AB2a3zYgsb0Hv8Lpz5tgJQvbee3YOUURlhN/3Pntb4OfOstt78WJ485vt/WAgeM89dtSEOCg3I3zKKfT85S+2zvHZZ20QEeypHvX/wd7xQSotjRApnBEO4wcVoYlcBl98sbz/d1TErM4dXV258oSE6e7utq/t1+ZWUx7x7LP2NhgIQ+5c0NZmM8FjY/aXjqh+DYsX2852FeC+Z5JHq7tWb4jfXVUgvDhqdjIlaHWP3dvv5e8HUcbAD34Q72tQxDscCFdb/1sOUTXCX/uazQDNmWM7x51wQt6/VNXewf+JM6D3g9JCgbDfw/3Nb2bRdtvZrNa8efbL35/yGKI72xUrgSjmEt5mQ4P9ReDMM0t3bHrNa+y+BDsHXnkl7UccUfz/HFUxq3PHBz5gSwnqMA3s4sWLbSD82tfaY2s2gXBUx0+fnXaCyy6z44BHTc5TBe57Jnm0umv1hvjdVQXCA4V6wStAq3si3n4wesst8I9/xLLJgt71CISDr9HQkOsod955M2aHqqq9a3VCC16sRLHvvjA0BMcfP9N7331zdcjh4dB87rpr5iQm1WSERWwd+qteFf2/YYKlEMcdx0Ch7LRjVhQ8lkt1CDXGngc2bJjdqA1VMtDfb3/V2H57OylLtYHwkiXFy3bAJgV+8IPYzkPueyZ5tLpr9Yb43VUFwu2lTiopRqt7ot6HHGKnI42Bgt6VDvk1G6IywiWoqr3jCoRvvtn+XOtTyru5efqLPtL7kENsULPpptH/v2rVzPGiC43qEQyERfID4UoJjRKh9bOZdiLbtbPT/tx/3nmF/3HtWvAnObn88tIvNDFhM6pXXlmdaIj2oSFbsrDVVvYXlnvvrXxijXXrZpZFJIDWY1mrN+h11+oN8burCoTHxsbqrVA1Wt1fct7h4C5YqxzFbEaT8IO0CoK1qtq7nAkyyuFVr8ovaQgOdVfidas+TsLZ2ELBQzDbu2BB7v/KnUI7SKhznNZjPO3MaNds1nbafOQR+O//LlwDfNtt9nbPPW1w63dyLMRtt9kJYP7nf2arDMDEv/9t72y9tQ2Ee3tzpQ5hBgdheHjm8mefrUsgrPVY1uoNet21ekP87qoC4ea4vvDrgFb3l7S3MXDOOTOX339/7v7QUPUSwbFuyyRV7e17F/IPuFbtvcce9vbcc+Hhhwuv953vwN13wze/aQOfM86ACy6Aj3yk8tcMZYRT1eYvIWa06/nnwzXX2BFaGhoKj9Ry6622M+k559hRXv72t+IvdN119vaee+wxMltvf4IVPxCG6PKIbDY3ffK3vmWzyD7PPlu8PrhGaD2WtXqDXnet3hC/u6pAOFtohisFaHV/WXoHO1PN5gNXxc/3qWrvZcvgk5+E66+Pfj7QNlV7L15s2+lznys+RFVLix1z9ROfgF12sSUuH/hAde9PKCOcqjZ/CZHXrv/8J3zmM3YYvXPPtcfV5Zfnsr9Bbr3VDi125JF2mL1S5RF//asdGnHOnOihA8MMDcEVVxQem9zPVG+1lT0XNDTAb39rA/fTTsv931//ascE3mwze1zut5/NXg8O2mHS6pAR1nosa/UGve5avSF+d1WBsKm0TitFaHV/2XoHp+qtXsLeVhAIV+29zTaw887V/W8hROAb35g5hJM/z3sgCFV1nIQywqrcFTHdro88AkcdZcea/ulP7XH1yU/aAPLEE2029fnn7bqDg3Ya4oMOshc/xx0Hv/99/mQqQTo7bSb4uOPgne+0ozAMDhYX+9rX7LoHHGAD2RDyzDP2GJ8/354HdtkFfvEL+2vExRfDt79tVzz/fLsP995rO7w99JDNSEeNIZwQWo9lrd6g112rN8TvrioQbkqyo1PMaHV/2Xo//TT4tYLV4o9DWqoD4CmnTNc3Vu29di08+mh1/1spt91mv/gDM16pOk5CGWFV7opoamqC9evhiCPsxcdf/pLr2Dlvng1aN9nEZlO33hpuugnuvNOWHLzylXa9977XBraFpgu//np7wfnGN9pymaGh4hnkbNaOd7377nb2t1Wr7Gudeur0iDWN69ZZH5+LL7bb7Oy0Ge2vfMWWY1x3nR36rKUF3vEOu+5NNxUeQzgBtB7LWr1Br7tWb4jfXVUgPD4+Xm+FqtHqnmrvF16wX2YRzNq7o8MOnzQbNtvMZokuuKD4ej//uf3ZmJS3t8+OO9oAIIAKb5/GRluKceedgDJ3RYyPj8NHP2rLBK69Nj+4BDjsMPsePPaY/UXjxBPhqqvsc/4Y1QcfbCebOO+8/Np9n+uus9nbffe15RS7724D10LcdJMNzr/wBVuTftZZ9sLo6qttVnlkBPP00/mu++9vM8iLF9tadWPssGdtbTb4BhvQ77Yb/P3v5Y0hXCO0HstavUGvu1ZviN9dVSA8N46fq+uEVvdUey9fboPNCFLjvdtuFY08kRrvClHnfe65tqYThe5KmDt3Lvz4xzZY3WuvwivutBP85jfQ328vGnfbLX8K7m9/2wa7p50GmUxuuTG2Tvf1r7cXNyI2YL39dnuRHMWll9pfao4+2tbAf/vbNnj9wx+guxt+9jMawhnhIFttZYPoiQk7gUxwqtfXvMbWQj/5pPUpcG6qJVqPZa3eoNddqzfE764qEB4sVfuVYrS6O+9kcd7Jo9k9zQwODtoAtpxZ0/bYIzfDZHj9JUvsc3ffbTOyPg89ZGuLDz88t+yoo+ztn/888zWGh+1wbMcfbzvWBTnkEJuF/spXkNHRwoEw2CEXv/AFOwRckNe8xtYy/+53sGJFsmOWe2g9lrV6g153rd4Qv7uqQHhRMEugDK3uL1nvrbZKxKNSXrLtnWI0u6eZitv1ve+FSy6ZLhPK4+1vh2OOgbPPhjVrbK3vpz9tyxqCU2S/4hW2JOGPf5y5jauussHwu9898zm/A9+LL9rHxc4Pra22Tnjlyvzlfl+ANWvqUh8Meo9lrd6g112rN8TvrioQ7u7urrdC1Wh1f0l6v/CC7ZmeQl6S7Z1yNLunmYrbVcTWA2+3XfRzF1xgy4ze/3470sS119rShs03z1/v6KPt2MP+uL7d3TZw/ehHbaa30JTfxx6be+1iGeFCLFuWG3qxDvXBoPdY1uoNet21ekP87qoC4WXLltVboWq0ur8kvZcvt0MjpZCXZHunHM3uaSb2dl2xwg7nd+ON8KlP2c5t//mfM9c76ihbonDjjXZ4tO23t5nk/fe3WeFCE8Q0Ntpyh+XLo4PxcnjNa+xtnTLCWo9lrd6g112rN8TvrioQ7uzsrLdC1Wh1d97J4ryTR7N7mqlJu55+OrzudTa4veii6DG6DzvMDs/2k5/Am98M7e12xIk//7l4pz2Ad7+bzgcesP9TDYcdZm/rFAhrPZa1eoNed63eEL+71GtQ5VWrVpnVq1fX5bUdDodjNojI3caYVfX2SJLUnLMzGfsXmhglj+OOs53W5s+HW26BPfdMxm1oyI5u8bWvVZ9VdjgcNaHQeVtVRrirq6veClWj1d15J4vzTh7N7mmmZu3a1FQ8CAbbIW7OHDssW4VB8Ky8582DX/+6bkGw1mNZqzfoddfqDfG7q8oIG2OQCqarTRNa3Z13sjjv5KnG3WWES1P3Y2JioqIxvH3q7j0LtLpr9Qa97lq9oXr3l0RGuK+vr94KVaPV3Xkni/NOHs3uaabu7VpFEAwp8J4FWt21eoNed63eEL+7qkB4fkp7+peDVnfnnSzOO3k0u6cZre2q1Rv0umv1Br3uWr0hfveyAmEROUJEHheRNSIyY7RzEXm1iNwjIhkReXushgFGRkZqtemao9XdeSeL804eze5pRmu7avUGve5avUGvu1ZviN+9ZCAsIo3ABcCRwK7AiSKya2i1Z4FTgctitQvR2tpay83XFK3uzjtZnHfyaHZPM1rbVas36HXX6g163bV6Q/zu5WSE9wfWGGPWGmMmgMuBY4IrGGOeNsY8AGRjtQuRyWRqufmaotXdeSeL804eze6FKONXvFYR+bX3/B0isnXcDlrbVas36HXX6g163bV6Q/zu5QTCK4B1gcfrvWWJo7WHI+h1d97J4ryTR7N7FGX+inca0GuM2R74DnBeDTzi3mQiaPUGve5avUGvu1ZviN890c5yInKGiKwWkdUbN25kbGyMkZERhoeHGR8fZ2BggEwmQ29vL8aY6bHi/FlE+vr6MMbQ29tLJpNhYGCA8fFxhoeHGRkZYWxsjMHBQSYnJ+nr6yObzU7PSe1vw7/t6elhamqK/v5+JiYmGBoaYnR0lNHRUYaGhpiYmKC/v5+pqSl6enoit9Hd3U02m6Wvr4/JyUkGBwcL7tPAwEDkPnV1daV6n3yHSt6nNOxTQ0NDVe9TvfdpdHQ09mMviX0aGBhI9PMU5z719/dX/D6lnJK/4nmPf+7dvxJ4ncT87dJQaCrjlKPVG/S6a/UGve5avSF+96Yy1tkAbBF4vNJbVjHGmAuBCwFEpHPOnDnPVLiJZYDWUaC1ujvvZHHeyVON+1a1EImJqF/xDii0jjEmIyL9wFJC7SAiZwBneA+HROTxCjy0HhNavUGvu1Zv0Ouu1Ruqd488b5cTCN8F7CAi22AD4BOAk6oQyMMY01Hp/4jIaq2D2Gt1d97J4ryTR7N7rQkmLypFa7tq9Qa97lq9Qa+7Vm+I371kftkYkwHOAq4DHgWuMMY8LCJfFpGjPan9RGQ98A7gxyLycFyCDofD4aiIcn7Fm15HRJqAhUB3InYOh8ORIsrJCGOMuQa4JrTs7MD9u7AnW4fD4XDUl3J+xbsaeA9wG/B24EZjjEnU0uFwOFJAWYFwiqjqJ7qUoNXdeSeL804eze4z8Gp+/V/xGoGL/V/xgNXGmKuBnwL/JyJrgB5ssBw3WttVqzfoddfqDXrdtXpDzO7ikgAOh8PhcDgcjpcjesfPcDgcDofD4XA4ZoELhB0Oh8PhcDgcL0vUBMKlpgytJyJysYhsFJGHAsuWiMjfROTf3u1ib7mIyPe8/XhARPapo/cWIvJ3EXlERB4WkQ9rcBeRNhG5U0Tu97zP8ZZv400Xu8abPrbFW17z6WQr9G8UkXtF5E/KvJ8WkQdF5D4RWe0tS/Wx4rksEpErReQxEXlURA7S4K2VNJ+rwZ2v6+Tuztn18Xbn7DJQEQhLeVOG1pNLgCNCyz4D3GCM2QG4wXsMdh928P7OAH6YkGMUGeDjxphdgQOBD3rtmnb3ceC1xpg9gb2AI0TkQOw0sd/xpo3txU4jCwlMJ1shH8YOReijxRvgNcaYvQJjOKb9WAH4LvAXY8zOwJ7YttfgrQ4F52pw5+t64M7Z9cOds0thjEn9H3AQcF3g8WeBz9bbK+S4NfBQ4PHjwGbe/c2Ax737PwZOjFqv3n/AH4A3aHIH5gL3YGfO6gKawscMtvf8Qd79Jm89qZPvSu9D/FrgT4Bo8PYcngaWhZal+ljBjo/7VLjd0u6t9U/Dudrzcufr+nm7c3Zy7u6cXcafioww0VOGrqiTS7ksN8Y8791/AVju3U/lvng/4ewN3IECd++nqvuAjcDfgCeBPmMngAm75U0nC/jTydaD84FPAVnv8VJ0eAMY4K8icrfYqXch/cfKNkAn8DPvp82LRKSd9HtrRWv7qToetJ2vwZ2z64Q7Z5eBlkBYNcZepqR2nDoRmQf8FviIMWYg+Fxa3Y0xU8aYvbBX6/sDO9fXqDQi8hZgozHm7nq7VMkhxph9sD9FfVBEXh18MqXHShOwD/BDY8zewDC5n9SA1Ho76kTajweN52tw5+w64c7ZZaAlEC5nytC08aKIbAbg3W70lqdqX0SkGXtS/aUx5nfeYhXuAMaYPuDv2J+nFomdLhby3dIynezBwNEi8jRwOfantu+Sfm8AjDEbvNuNwFXYL7O0HyvrgfXGmDu8x1diT7Jp99aK1vZTcTxoP1+DO2cniTtnl4eWQHh6ylCvd+YJ2ClC04w/hSne7R8Cy0/xejoeCPQH0v2JIiKCnWHqUWPMtwNPpdpdRDpEZJF3fw62Tu5R7Mn17d5qYW9/f+o2nawx5rPGmJXGmK2xx/CNxph3kXJvABFpF5H5/n3gjcBDpPxYMca8AKwTkZ28Ra8DHiHl3orReK4GBceD1vM1uHN2gsrTuHN2ZS+q4g94E/AEtq7o8/X2Cbn9CngemMRezZyGrQu6Afg3cD2wxFtXsL2qnwQeBFbV0fsQ7M8LDwD3eX9vSrs78ArgXs/7IeBsb/m2wJ3AGuA3QKu3vM17vMZ7ftsUHDOHAX/S4u053u/9Pex/BtN+rHguewGrvePl98BiDd5a/9J8rvb83Pk6eXd3zk7e152zy/xzUyw7HA6Hw+FwOF6WaCmNcDgcDofD4XA4YsUFwg6Hw+FwOByOlyUuEHY4HA6Hw+FwvCxxgbDD4XA4HA6H42WJC4QdDofD4XA4HC9LXCDseNkiIoeJyJ/q7eFwOByO0rhztqMWuEDY4XA4HA6Hw/GyxAXCjtQjIieLyJ0icp+I/FhEGkVkSES+IyIPi8gNItLhrbuXiNwuIg+IyFUisthbvr2IXC8i94vIPSKynbf5eSJypYg8JiK/9GZvcjgcDkeVuHO2QxMuEHakGhHZBXgncLAxZi9gCngX0A6sNsbsBvwD+G/vXy4FPm2MeQV2lhl/+S+BC4wxewKvxM4sBbA38BFgV+xMPAfXeJccDofjJYs7Zzu00VRvAYejBK8D9gXu8i785wAbgSzwa2+dXwC/E5GFwCJjzD+85T8HfuPNt77CGHMVgDFmDMDb3p3GmPXe4/uArYF/1nyvHA6H46WJO2c7VOECYUfaEeDnxpjP5i0U+WJovWrnCh8P3J/CfSYcDodjNrhztkMVrjTCkXZuAN4uIpsAiMgSEdkKe+y+3VvnJOCfxph+oFdEXuUtfzfwD2PMILBeRI71ttEqInOT3AmHw+F4meDO2Q5VuCspR6oxxjwiIl8A/ioiDcAk8EFgGNjfe24jtiYN4D3Aj7yT5lrgvd7ydwM/FpEve9t4R4K74XA4HC8L3DnboQ0xptpfJxyO+iEiQ8aYefX2cDgcDkdp3DnbkVZcaYTD4XA4HA6H42WJywg7HA6Hw+FwOF6WuIyww+FwOBwOh+NliQuEHQ6Hw+FwOBwvS1wg7HA4HA6Hw+F4WeICYYfD4XA4HA7HyxIXCDscDofD4XA4Xpa4QNjhcDgcDofD8bLEBcIOh8PhcDgcjpclLhB2OBwOh8PhcLwscYGww+FwOBwOh+NliQuEHQ6Hw+FwOBwvS1wg7HA4HA6Hw+F4WeICYUcqEZGnReT19fZwOBwOR+W8FM/hInKtiLyn3h6OeHGBsEK8E8yoiAwF/javclunisg/S6xzk4iMhV7vj9XZ1w4ROUxEjIh8ut4uceDty/b19nA4HOkgyXO/iPxIRC6NWL6niIyLyJJqXtfbxiXe+e2Y0PLveMtPrXbbs3AyIjLstWm3iNwgIu8MrmOMOdIY8/Ok3Ry1xQXCejnKGDMv8PdcjV/vrNDrHVXj16uG9wA9wCm12LiINNViuw6Hw1EBSZ37fw68TUTaQ8vfDfzJGNMzy+0/QeBc7Z1fjweenOV2Z8Oexph5wE7AJcAPROS/6+jjSAAXCL9EEJHFIvInEekUkV7v/srA86eKyFoRGRSRp0TkXSKyC/Aj4CDvKrivitc9TETWi8jnRKTLy1i8K/D8QhG51PN6RkS+ICINgedPF5FHPa9HRGSfwOb3EpEHRKRfRH4tIm1FPNqBtwMfBHYQkVXe8k+LyJWhdb8rIt8L+P1URJ4XkQ0i8lURaQy02b+8LEU38CUR2U5EbvQyBl0i8ksRWRTY9j4icq+3P7/xvL8aeP4tInKfiPSJyK0i8ooq2rxgm4rI9iLyD6/NukTk195y8fZjo4gMiMiDIrJ7pa/tcDjSRa3O/caY24ANwHGBbTUCJwGXljoXlsEfgUNEZLH3+AjgAeCF0P79h/cd0Ssi14nIVoHnvisi67xz2t0i8qrAc18SkSu8c+WgiDzsfy+UwhjTZYz5P+A/gc+KyFJvmzeJyPsCrxH5/SUim4vIb7335CkR+VAF7eJIGBcIv3RoAH4GbAVsCYwCP4DpIPF7wJHGmPnAK4H7jDGPAmcCt3mZhUVVvvamwDJgBTYre6GI7OQ9931gIbAtcCg2A/Bez+sdwJe8ZQuAo4HuwHaPx54ctwFeAZxaxOFtwBDwG+A6zwPgcuBNIjLfe81Gb7uXec9fAmSA7YG9gTcC0yc64ABgLbAcOBcQ4H+AzYFdgC28fUBEWoCrvG0uAX4FvNXfkIjsDVwMvB9YCvwYuFpEWovsVxQF2xT4CvBXYDGw0lsXb79eDezo/e/x5Le1w+HQSS3P/ZeS/wvb64Fm4BqKnAvLZAz4A3CC9/gU7/WmEVs68Tns+b0DuAV7XvW5C9gLe769DPhNKGFyNPY7YBFwNV67VMAfgCZg//AThb6/vKTEH4H7sd+JrwM+IiKHV/jajqQwxrg/ZX/A09igr8/7+33EOnsBvd79dm+944A5ofVOBf5Z4vVuAkYCr9cHfMV77jBsINkeWP8K4ItAIzAB7Bp47v3ATd7964APF9nHkwOPvwH8qIjj9cD53v0TgU6g2Xv8T+AU7/4bgCe9+8uB8WCbeP/790DbPFuibY4F7vXuvxqbQZHA8/8Evurd/6HfboHnHwcOLbBtA2wfWlaqTS8FLgRWhv7vtdifIg8EGup9DLs/9+f+Kv+rw7l/S2DSP58AvwS+W2Dd6XNhwPX1Bda9BPgqcAhwGzZQfRGY450zT/XWuxY4LfB/Ddjvoq0KbLcXW94ANki9PvDcrsBokX2dcb71lr8AvMu7fxPwPu9+5PcXNnnybGjZZ4Gf1fv4cX/Rfy4jrJdjjTGLvL9jRWSuiPzY+6l8ALgZWCQijcaYYeCd2AzA8yLyZxHZucLX+1Dg9RYZY74YeK7Xew2fZ7BZgmXY7MEzoedWePe3oHg9WPAnshFgXtRKIrIF8BrsSRrsVXwb8Gbv8WXYABfsz3p+Nngrz+95r1ShD5ul3SSw+XWh11ouIpd7ZRQDwC+8/QS7zxuMd+aL+P+tgI/7r+W93hbe/5VLqTb9FDZTc6f3U+B/ABhjbsRmQy4ANorIhSKyoILXdTgc6SCxc78x5llveyeLyDxssHsplDwXlrv9f2IzvZ/H1h2PhlbZCvhu4HzZgz2/rfAcPuGVJvR7zy8MOYS/Q9qkgr4eItLs+UXVQxf6/toK2Dx0nv8cNvHiSCEuEH7p8HFsgf8BxpgF2Owk2JMGxpjrjDFvADYDHgN+4j1vwhuqgsWS36FiS+A5oAubTdgq9NwG7/46YLsYXv/d2GP5jyLyAraUoY1cecRvgMO8urm3kguE12EzwssCXywLjDG7BbYdbp+vecv28Nr5ZLw2Bp4HVoiIBNbfInB/HXBu6IJirjEm+FNfKYq2qTHmBWPM6caYzbGZ4v8Vb+QJY8z3jDH7YjMjOwKfrOB1HQ5HOqn1uf/n2HPsccBTxpi7veXFzoWV8AtvH2aMUIE9Z74/dM6cY4y51asH/hS2zGuxseUd/VU6FOIY7C+edxZwi/r+Wodtp6DzfGPMm2L0csSIC4RfOszH1ob1iR3WZrqnq3flfowXrI5jf1rLek+/CKz06ltnwzki0uKdnN4C/MYYM4UtkzhXROZ7nRw+hj3xAVwEfEJE9hXL9sGOEBXwHuAc7E+C/t9x2NrgpcaYTuxPWj/DnqAeBTDGPI+tp/2WiCwQkQavA8ihRV5rPrb9+kVkBfnB5G3AFHCWiDR59W3B2rKfAGeKyAHe/raLyJv9+uUCtIhIm//nLSvYpiLyDsl1lOnFflFlRWQ/73WbgWFsfV4Wh8OhnVqf+3+Lvdg+BxsUB1+30LmwEr6HLVm7OeK5H2E7q+3m7c9CrzbXf/0MtgyuSUTOxtbqzhoRWSK20/cFwHnGmKj+FIW+v+4EBsV21J4jIo0isruI7BeHmyN+XCD80uF8bH1VF3A78JfAcw3YYOk57E88h2J7wwLcCDwMvCAiXUW2/wPJH7vy7sBzL2CDruew5QlnGmMe8577L2zgtRZb+3UZtsMYxpjfYDugXQYMAr/HdnooGxE5EJsdvcDLhvp/VwNryJVEXIbt6HFZaBOnAC3AI94+XInNnBTiHGAfbObhz8Dv/CeMMRPYTh2nYevyTgb+hP0CwhizGjgdW6LQ6/mdWmIXH8Z+yfl/76VImwL7AXeIyBC2c8iHjTFrsV8QP/Fe9xlsR7lvlnhth8ORfs6nhud+r7zit9jOt78MPFXwXFgJxpgeY8wNoZIy/7mrgPOAy73yi4eAI72nr8Pu6xPYc9oYoVK2KrjfO3euwXaa/qgx5uwC3pHfX14C6C3YhMxT2PflImzZhiOFSMSx53CUjYgcBvzCGLOyxKovS0TkDmwnv5/V28XhcDgcDkc+LiPscMSIiBwqIpt6pRHvwQ779pdS/+dwOBwOhyN5XCDscMTLTtjxI/uwHUDe7tUiOxyJISIXi5085aECz4uIfE9E1oidtGafqPUcDofjpY4rjXA4HI6XGCLyamxHpkuNMTNmEBSRN2Frzd+EHff0u8aYA5K1dDgcjvrjMsIOh8PxEsMYczPRY5/6HIMNko0x5nbsuLPFOok6HA7HS5KyB5aOm2XLlpmtt966ov8xxpA/RKsetLo772Rx3slTjfvdd9/dZYzpqJFSEqwgv4f9em9ZXhmPiJwBnAHQ3t6+70477YT/K6KIkM1maWhoIJvN0tjYSCaToampiUwmQ2NjI1NTUzQ1NTE1NTW9XkNDQ942/PaP2kbUrb+t8K+Z1W7Dd/C3MTU1RWNjY8ltpXGf/OM4vE/F3qc07NPk5CTNzc0VvU9p2SdjTFkemvYpzs9TLfap0PFSap/uvffeyPN23QLhrbfemtWrV9fr5R0Oh6NqROSZ0mvpxxhzIXbKblatWmXcOdvhcGil0HlbVWlEZ2dnvRWqRqu7804W5508mt1nwQbyZz1cSW7Gx1jQ2q5avUGvu1Zv0Ouu1Rvid1cVCHd06P0lUqu7804W5508mt1nwdXAKd7oEQcC/XGPbqK1XbV6g153rd6g112rN8TvrioQdlcwyeO8k8V5J49m90KIyK+wU37vJCLrReQ0ETlTRM70VrkGOzPhGuyMgx+I20Fru2r1Br3uWr1Br7tWb4jfvW7Dp7l6M4fDoRURudsYs6reHkniztkOh0Mzhc7bqjLC3d3d9VaoGq3uzjtZnHfyaHZPM1rbVas36HXX6g163bV6Q/zuqgLhxYsX11uharS6O+9kcd7Jo9k9zWhtV63eoNddqzfoddfqDfG7qwqEBwYG6q1QNVrdnXeyOO/k0eyeZrS2q1Zv0Ouu1Rv0umv1hvjdVQXC7e3t9VaoGq3uzjtZnHfyaHZPM1rbVas36HXX6g163bV6Q/zuqgLhsbGxeitUjVZ3550szjt5NLunGa3tqtUb9Lpr9Qa97lq9IX53VYFwc3NzvRWqRqu7804W5508mt3TjNZ21eoNet21eoNed63eEL973aZYroZsNltvharR6u68k8V5J49m9zSjtV21eoNed63ekIx71mRpkMJ5S2MMY5kxMtkMIkJLYwvNDTZYHBgfYOPwRua1zKOjvYOmhqY87393/5sGaWDTeZvS0tjC8OQwk1OTzGuZR2tTK+v61/FY12MMTw7T1tRGS2MLgtDc2MxBKw+iudG+Tv9YP3dsuIMlc5awdM5SRiZH6B3rZXB8kLHMGBNTEzRIAwZD72gvXSNdAMxvnU9LYwujk6Nkshl232R3Dlh5AIKwpmcNGwY3MDwxzFhmjDnNc5jfMp/N52zOvlvuG1v7qgqEV128ir0224vLjrus3ioVU6/xmmeL804W5508mt3TjNZ21eoNM92NMYhI0f/ZOLyR/rF+AJoampjfOp8FrQtoaWyp+PXHM+O0NrXmLRueGGb9wHo2Dm9kYmqCrMmyzeJt2HbxtgxNDPG3J//G7c/ezuL2xcxvmU9TQxMGG9j1j/VjMOy96d6s2nwV7S3tTGWnaG5sZl7LPEYnR7nn+Xu45/l72DC4gY3DGxnNjAIgCE0NTTQ1NNHe3M781vls0r4J2yzaht022Y2dl+0M2CDzpqdv4oa1N3D7htt5bvA5Vi5YyWbzNmNoYoiukS7Gp8YBWDF/BZ985Sc5aIuDeKbvGS578DI2aduEU/Y5hebG5un9uenpm/jXun+xYsEKjtrxKHbr2I31A+t5pv8Znux5kid7n6RntIfhyWEEYdncZSxsW8jo5CijmVE2nbcpu3XsxsjkCH9Z8xee6H6Ct+7yVs7Y5wye6X+GKx6+gse7HydrskxOTdIz2jPt6NMojTQ1NOUtF4Sdlu3E0TsezeZzN+cXj/yC1c9VPzb4HpvswUVHX8TG4Y28/0/v57nB56reViWctudpXLTlRbFtT1UgbDBMZifrrVEVTU2qmnoa550szjt5NLunGa3tWon36OQoE1MTLGhdwHODz/Hju3/MVY9dxcVHX8x+K/aLxWcqO8V9L9zHwraFrJi/gnUD67h13a2s6VnDxNQEAPuv2J/XbvNanul9hr/d9zduXXcrD218iGf6n2GT9k3YetHWbL9ke3ZeujPL5i6jf7yf9QPrueGpG3ho40MzXrOlsYUTdj+Bjx74UfbadC+MMfxr3b/44eof8tcn/8ritsWsWLCCTx/8aY7Y/ggAvv7Pr/P5Gz/PkjlL2GHJDgxPDrOufx29Y72R+zWvZR7jmXEms5MIgmHmBYggiAhZUzrr2tbUxvL25bS32I5UWZNlKjvFxNQEI5MjDE7YzKTPHpvsweHbHc7VT1zNE91P0NTQxJ7L92TXjl3ZMLCBf3f/m/mt81k6ZylL5iwB4JZnb+Gqx65it47deKTzkWnnc/55Dnttuhd/W/s3m7lsmsP+K/bnvhfu4+rHr87zXDpnKdst2Y7l85bT3tyOwdA90s2GgQ3MaZ5DW1MbD218iN8/9nuaGpp41Zav4uAtDuaKR67gioevAGDbxdtyyJaHTAe7S+YsYcmcJfYiwhgmpiYYnhwmk82wSfsmbNK+CUMTQ7w49CK3rr+Vb9/+bTLZDLt27Mr5h5/PorZFPD/0PBNTE8xvmT8d1A9PDLNywUp26diFRW2LGMuMMZ6xgfWz/c/y6es/zYEXHYjBsMcme/Djt/yYrMnSPdJNe0s7i9oWMb9lPnOa59DS2DJ9obZ4zmKWzlmKiDA4PsjE1ARzmucAcO/z93LHhjtoamhihyU7sMXCLZjXMo+2pjZGJkcYmhhibsPcksdDJaiaWW73C3Znx2U78rt3/q5GVrXj/7f35mGSleX99+fpfXqd6Z5mG2aYYXeUfXABFEUR3Fgiiqi4JMQkl+Y1b6LG7dX8SDS/YKImBpe4ROMGrglRFBRQ3EAGWYcRmJ1hgOmu7uqqXmp/3j9qobqnq/t09amnztd5Ptc1V1edOn36c566+8xdd9/neRKJBP39/c3WWDLe2y3e2z31uPuV5RYnqjFx++7b+d7W7/GPL/7Hyn++1SzmPZWZ4n23vI+f7/45W/ZvIW/ztLW0UbAFrLW0tbRxxUlX8JVLvgJAMp3kkdgjnHHE4n/KfWjkIa751TWkcilOO+w0UrkUX7znizyWeOyAfVtMC52tnRRs4YBq4AlDJ3DyoSezYeUG9k/vZ1d8F4/GHuXx5OOVfTpbO3n+Uc/n/KPPZ03fGgAy+QyTmUm2jm7lv+77L6ayU7OOO9A5wMUnXkwql+LufXeze2I333z1N0mmk/zxDX/My459GWv61vDoWDGJXNe/jrUDa1nbv5ZDew+ls7UTi+XR2KPc99R9rGhbwSuOfwXPGngWPb09JNKJStLb2dZJf2c/mXyGe564h3uevIdsPktrSyu5Qo5kOkmLaeG0w4vV4uHu4UWr3/FUnF3xXfxqz6/42gNf4469d/C8I5/H2898O5c+41K62xdOsKYyU3x282f59kPf5iVHv4Q/Pf1PuWv3XXz63k+zY3wHrzr+Vbx646s5a+1ZlcTvgf0PsGdiD+sG1rFuYB0ru1Yu+DPKpHIprLWVGJ3OTnPjozeyfuV6zjj8jEXPdSEmUhNseXwLzzv6ecs6TiKd4O9//vesWrGKd531rrr+ilDXz63z2lLrui2VCJ/62VNZN7COG664YfGdI0Yul5OskHhvt3hv99Tj7hPhxXEZE08kn5jV/zgf1lo+cccneM9P3kPe5vnLZ/8l//ayf5u1z5OTT/LZuz6LxVKwBXZN7OKR2COcdthp/MtL/4WO1g4uuf4Sfrztx5x/9PlsOmITq7pWMTYzRntrO2865U189Bcf5fot1/PUu56iu72bt/7PW/nmA98k/t44XW1d87pNZ6f58x/8OV+7/2v0dPSwuns1u+K7AHjpMS/lypOvJF/Iszexl0N6DuHsdWdz4uoTaTEtZPNZfvv4b/nZrp8x2DXIq058FUf2Hznvz0mmk8RTcVatWEVPe8+CSdD4zDjfeOAbjEyPALB+5Xpes/E1lYrrRGqCl3/j5dyx9w4MhvM2nMcPXv+DupKhZl0/pjJTlfOpF9Vrn6o31O9e67otNQrGGvI232yNukgmk5IruXhvt3hv9yi7RxlX4zo+M85xnzqOc9adww1X3DBvIpZMJ7nqf6/iW1u+xaUnXspw9zCf+u2neOXxr+Slx7y0st+n7vwUH/3lRyvP1/avZf3K9fzH3f/Brx77FRuHN3Ljozfy2Vd8lj/b9Gfz+rz+pNfzxXu+yP8+/L+ctfYsvnb/18gVcuyK76r0pc7lml9dw1fv/yrvPuvdvOfs97C6e3Wx7zOX5vC+wxc8//bWds5edzZnrzub8fFxVvXXHvO+zj76OvsWPF6ZVStW8fZnv73m6wNdA9z0xpt4zbdfQyKd4Luv/W7dFcFm/Q4uNwkG3euHqjeE7y6VCHe2d5IvaCbCK1eubLZCXXhvt3hv9yi7RxlX43rrzluZyk5x0/abeMt/v4Wv/dHXZt1h//vR3/NH1/8RD8ce5v+++P/ynrPfQyqX4peP/ZK3/PdbeOAvHmCoe6h4rF23ctaRZ/GrP/nVrBvNbt5+M1d89woe3P8gHz73wzWTYIBzjzqXI/qO4OsPfJ079t5BrpADYMf4jnkT4ccmHuOaX13D5c+8nGvOv6ayvdyXuhRcx3JvRy8/esOPAt2UtxDKv4Oq7qreEL671DzChXyhclFRIxaLNVuhLry3W7y3e5Tdo0wjx7W6pe/m7TfT39nP1S+8mm8++E3+6sd/VXn9oZGHeM4XnsPo9Cg/ufIn/O05f4sxhhXtK/japV/jqamn+Lc7i+0RiXSCux6/i+ce9lyAWYndS495Kff+2b1cf9n1fPjcDy/o1trSyhXPuoIfbfsRn//d5ysV5+1j2+fd/323vI+CLfBPL/mn+gekRLNieTlJMGj/Dqq6q3pD+O5SiXBXR5dsa8Tq1aubrVAX3tst3ts9yu5RplHj+t6fvpfzv3o+1lqstdy842ZetP5FfPAFH+T/fe7/y6d++yk++ouPEk/FueS6S+hq6+K3f/pbzttw3qzjnHb4aZx71Llcv+V6rLXcvvt28jbPKze+ct6fu3ZgLa995msDJX1vOOkN5Ao5prJT/PP5/0xPew/bxw9MhO/ceydff+DrvOusd3HUyqPqG5AqVGNZ1Rt03VW9IXx3qUTY5q1sRXhkZKTZCnXhvd3ivd2j7B5lGjWuD8ce5padt/Drx37N9vHt7Irv4vyjz8cYwz+/9J9548lv5IO3fZDnffF57Izv5Luv/S7rV66f91iXP/NyHo49zP1P3c+tO2+lq62LY7uOXbbjqYedyumHn86lJ17KSYeexDGDxxyQCFtrec9P38OhPYfy3nPeu+yfCbqxrOoNuu6q3hC+u1SPcFdnF1OZqcV3jCDDw8PNVqgL7+0W7+0eZfco06hxLU+v9a93/isvWv8igEr7QYtp4UsXfYnYdIwfbfsRn3nFZzhn3Tk1j/Xqja/m7Te+nesevI5bd97K2WvPZu3ha5ftaIzhF2/9Ba2mFSjO+/pI7JFZ+9y0/SZu33071778Wno7epf9M0E3llW9Qddd1RvCd5eqCBdyBdnWiNHR0WYr1IX3dov3do+ye5Rp1LiWb5j+3tbv8eX7vsxRA0dx7ODTVdz21na+d/n3+M2f/IY/O6P2TW0Aq7tX8+KjX8xX7vsK9z11H+dtOC807+727soqa8esOoYd4zsqSXzBFnj/Le9nw8oNXHX6VaH8PNCNZVVv0HVX9Ybw3aUS4RWdK2RbI4aGhpqtUBfe2y3e2z3K7lGmUeNasAUO7z0ci+W3j/+20hZRTVdbF8898rmB+nkvf+blPDH5BADnbTivId7HrDqGVC7FE8niz/nOQ9/hnifv4eoXXR3qIgSqsazqDbruqt4QvrtUIlzIFWSnT4vH481WqAvv7Rbv7R5l9yjTqHEt2ALrBtZxyYmXAMyaB7geLj3xUtpb2unr6GPTEZsa4n3M4DEAlT7hf7j9H3jWIc/iimddEerPUY1lVW/QdVf1hvDdtXqEO7rIT2kmwn19wSYxjxre2y3e2z3K7lGmUeNasAVaTAsfesGHmMxMcsGxFyzreKtWrOKPT/tjWk0rbS1tDfE+etXRQHEu4TV9a3hg/wN88oJP0trSGurPUY1lVW/QdVf1hvDdpSrCtqA7a8T09HSzFerCe7vFe7tH2T3KNGpcy4nwKYedwk1vvIn+zv5lH/Ozr/ws177iWqAx3kcNHEWraWX72HZ++OgPAXjl8fNP07YcVGNZ1Rt03VW9IXx3qYpwR3uHbGtEZ2dnsxXqwnu7xXu7R9k9yjRqXAu2EHoltZpGeLe3trNuYB3bx7fz232/5YShEyrtEmGiGsuq3qDrruoN4btLVYRbaJGtCOdy3tsl3tstqt6g7R5lGjWueZuftYRy2DTK+5jBY7jvqfv42a6fNaQaDLqxrOoNuu6q3hC+u1Qi3GpaZadPW+4SlM3Ce7vFe7tH2T3KNGpcy60RjaJR3kevPJqHRh4ik8/wiuNe0ZCfoRrLqt6g667qDeG7SyXC7a3tsq0RLS1SQ13Be7vFe7tH2T3KNGpcG50IN8q73ArR39m/4CIfy0E1llW9Qddd1RvCd5caCWONbGtENptttkJdeG+3eG/3KLtHmeWM6+27b+f6B6+f97VGJ8KNiodjVhUT4QuOuYD21vaG/AzVWFb1Bl13VW8I313vZjnR1oiurq5mK9SF93aL93aPsnuUWc64vucn72H/1H4uf9blB7zW6ES4UfGwcXgjQGX+40agGsuq3qDrruoN4btLVYRtXnf6tKmpqWYr1IX3dov3do+ye5Spd1zHZsa4a99dJNKJeV8v2AKtpnGzRjQqHp4x/Awe+IsHQl9EoxrVWFb1Bl13VW8I312qIryia4Vsj3B///LnumwG3tst3ts9yu5Rpt5xvXXnrRRsgWQmOe/rja4INzIennXIsxp2bNCNZVVv0HVX9Ybw3aUqwrlMTrY1Ynx8vNkKdeG93eK93aPsHmXqHdebt98MQCafIZ1LH/B6vtDY6dOU40HVXdUbdN1VvSF8d6lEuLe7V7Y1YmhoqNkKdeG93eK93aPsHmXqGVdrbSURBuZtj2h0RVg5HlTdVb1B113VG8J3l0qE0zNp2daIkZGRZivUhfd2i/d2j7J7lKlnXB8de5TdE7t53pHPA5i3PaLRibByPKi6q3qDrruqN4TvLpUI9/f2k7d5rLXNVlkyw8PDzVaoC+/tFu/tHmX3KFPPuJarwa9+xquB5lSEleNB1V3VG3TdVb0hfPdAVxNjzIXGmIeNMduMMe+d5/W3GGNGjDH3lv5dFaplidRMCiheCNVQ/fTlvd3ivd2j7B5l6hnXm7ffzLGDx3LKYacAkEz7ivBSUHVX9QZdd1VvCN990VkjjDGtwLXA+cBe4C5jzA3W2ofm7Hq9tfYdodrNob+3eKdg3uZppXHT5zQC1U9f3tst3ts9yu5RZqnjmsqluG3XbVx58pX0dfQBtSvCrS2Nu/4rx4Oqu6o36LqrekNzKsLPBrZZa3dYazPAdcDFoVoEJJPOAEjeMDc2NtZshbrw3m7x3u5Rdo8ySx3Xm7bdxGRmkktOvIT+zmLRY75EOG8bO2uEcjyouqt6g667qjeE7x7karIGeKzq+d7Strm82hhzvzHmO8aYtfMdyBjzNmPMZmPM5v3795NKpZienmZqaop0Ok0ikSCXyzE+Po61ltHRUaCqDF7qiBgdGyWXy5FIJEin00xNTTE9PU0qlSKZTJLNZonH4xQKBWKx2KxjlL+OjY2Rz+eZmJggk8kwOTnJzMwMMzMzTE5OkslkmJiYIJ/PVwZ97jFisRiFQoF4PE42myWZTNY8p0KhMO85jY6OYq1lfHw8kufU0tKy5PcpCuc0MDBQ1/vU7HNqbW0NPfZcnFOhUHD6+xTmOeXz+SW/T57FGRgYWNL+337o2wyuGORF619USYSbcbPcUr2jhKq7qjfouqt6Q/juZrEbz4wxlwEXWmuvKj2/EnhOdRuEMWYImLTWpo0xfwZcbq09b6Hjbtq0yW7evHlJsv942z/y/tvfz/jfjrOya+WSvrfZTExMSAae93aL93ZPPe7GmLuttZsapBRJlnrNXsq4pnIpDvnYIbz2ma/lCxd9gUQ6wcD/HeBj53+Md531rln7HvXJozhvw3n858X/uST/oBxssRwFVL1B113VG+p3r3XdDvKx+nGgusJ7ZGlbBWttzFpbnvn8C8AZSzYMQFdncX1pxdaIFStWNFuhLry3W7y3e5Tdo8xSxvXm7TeTzCR5zcbXANDb0QsscLNcAyc8Uo4HVXdVb9B1V/WG8N2DXE3uAo4zxmwwxnQArwNuqN7BGHN41dOLgK3hKVZRao1QnEs4k8k0W6EuvLdbvLd7lN2jzFLGtdwWcd6G4h8SW0wLvR29TZk+TTkeVN1VvUHXXdUbwndfdNYIa23OGPMO4CagFfiStXaLMeZqYLO19gbg/zHGXATkgDHgLaFalmhvbQeQXGa5tVVrlosy3tst3ts9yu5RJui4pnNpbnj4Bi57xmWVazxAf2d/zR7hRs4aoRwPqu6q3qDrruoN4bsvmggDWGtvBG6cs+1DVY/fB7wvVLN5KF/8FFsjPB6Px3Mgv9zzSxLpBH/0jD+atb2/s3/+WSMKjZ01wuPxHFxIXU3Kcwdn89kmmyyd8p3panhvt3hv9yi7R5mg41pOdtf0z56MqK+jrymtEcrxoOqu6g267qreEL67VCK8oqPYIJ0t6CXCHR0dzVaoC+/tFu/tHmX3KBN0XMutbq1m9p87F2qNaGQirBwPqu6q3qDrruoN4btLJcI2X5zqLZPXa/JWnXvUe7vFe7tH2T3KBB3X8s3Pc/t++zqbUxFWjgdVd1Vv0HVX9Ybw3aUS4f6e4iTriq0Rvb29zVaoC+/tFu/tHmX3KBN0XAu2OB3Q3OS2v7O/9vRpDUyEleNB1V3VG3TdVb0hfHepRDibKibAiq0RExMTzVaoC+/tFu/tHmX3KBN0XGu2RnTMf7NcoxNh5XhQdVf1Bl13VW8I310qER4cGAQ0WyMGBwebrVAX3tst3ts9yu5RJui4LtYaMXf104ItHJA0h4lyPKi6q3qDrruqN4TvLpUITyenAc3WiJGRkWYr1IX3dov3do+ye5QJOq4LtUbkbZ5ULjVre942dvo05XhQdVf1Bl13VW8I310qER4eGgY0K8LDw8PNVqgL7+0W7+0eZfdaGGMuNMY8bIzZZox57zyvrzPG3GaMuccYc78x5uVhOwQd11qtEX0dfQAHtEc0ujVCOR5U3VW9Qddd1RvCd5dKhCcnJgHNHmHVT1/e2y3e2z3K7vNhjGkFrgVeBmwErjDGbJyz2weBb1lrTwNeB3w6bI+g41qrNaK/s3hz9Nwp1BqdCCvHg6q7qjfouqt6w0FeET509aGAZmuE6qcv7+0W7+0eZfcaPBvYZq3dYa3NANcBF8/ZxwL9pccDwL6wJYKO60KtEeArwktB1V3VG3TdVb3hIK8ITyWnAM3WiFgs1myFuvDebvHe7lF2r8Ea4LGq53tL26r5O+CNxpi9wI3AX4YtEXRca7ZGdB7YGlG+ca6RibByPKi6q3qDrruqN4TvLpUIr161GtBsjVi1alWzFerCe7vFe7tH2X0ZXAF82Vp7JPBy4KvGHJhdGmPeZozZbIzZvH//flKpFNPT00xNTZFOp0kkEuRyOcbHx7HWMjo6ChT/dLlq1SpGR0ex1jI+Pk4ulyORSJBOp5mammJ6eppUKsXUTLHAMZmcpFAoVP6Ty08XE+S9I3sBGBsbI5srXfstTE5OMjMzw8zMDJOTk2QyGSYmJsjn84yNjVU8qr/GYjEKhQLxeJxsNksymTzgnFpbW2ueExDonJLJJNlslng8Puuc5vqMjY2Rz+eZmJggk8ks+5x6e3vnPaeF3qconFN5ydylvE9ROaf29vbQYs/lOVlrQ409l+dUKBTqir1amLlT07hi06ZNdvPmzUv6ngcfe5CTvnQSn3/V57nq9KsaZNYY4vE4K1eubLbGkvHebvHe7qnH3Rhzt7V2U2OMlocx5nnA31lrLyg9fx+AtfYfq/bZAlxorX2s9HwH8Fxr7f5ax13qNTvouH78Nx/nb27+G+J/G2ega6Cy/eHRhznx2hP52qVf4w0nvwEo/jWw8x86+ch5H+H9z39/YJelcLDFchRQ9QZdd1VvqN+91nVbqiI80Fu8SCr2CPf09DRboS68t1u8t3uU3WtwF3CcMWaDMaaD4s1wN8zZZw/wYgBjzDOALiDUO1CCjutiPcLVN8vV2jdMlONB1V3VG3TdVb0hfHepRLiQLV4EFXuEU6nU4jtFEO/tFu/tHmX3+bDW5oB3ADcBWynODrHFGHO1Meai0m5/A/ypMeY+4JvAW2zIfx4MOq6LzRpR3SPsIhFWjgdVd1Vv0HVX9Ybw3dtCPVqD6e7sBjR7hNvb25utUBfe2y3e2z3K7rWw1t5I8Sa46m0fqnr8EHB2Ix2Cjmutm+W627tpMS0k024rwsrxoOqu6g267qreEL67VEW4zRTzdsXWiHJztxre2y3e2z3K7lEm6LjWSm6NMfR19DmvCCvHg6q7qjfouqt6Q/juWolwSzERVmyNaNZNicvFe7vFe7tH2T3KBB3XWq0RUJxCLZE5MBGeWz0OE+V4UHVX9QZdd1VvCN9dKhHuaO+g1bRKtka0tUl1oVTw3m7x3u5Rdo8yQce13BoxX5W3v7PfeWuEcjyouqt6g667qjeE7y6VCKfTadpb2yUrwul0utkKdeG93eK93aPsHmWCjutCK8X1d/bPao0oV48bmQgrx4Oqu6o36LqrekP47lKJcHd3N+0t7ZI9wt3d3c1WqAvv7Rbv7R5l9ygTdFzzhXzNVoe+jj7n06cpx4Oqu6o36LqrekP47lKJcDKZlK0IJ5PJxXeKIN7bLd7bPcruUSbouOZtft7+YDiwIuwiEVaOB1V3VW/QdVf1hvDdpRLhlStX0mJasOg1eauu4OK93eK93aPsHmWCjuuCFeFO97NGKMeDqruqN+i6q3pD+O5SiXAsFismwoJ3O5bX+1bDe7vFe7tH2T3KBB3XBXuEO9zfLKccD6ruqt6g667qDeG7SyXCq1evxmAqF0MlVq9e3WyFuvDebvHe7lF2jzJBx3Wx1ohkJlkpflSmT6uxfxgox4Oqu6o36LqrekP47lKJ8MjICMYYydaIkZGRZivUhfd2i/d2j7J7lAk6rou1RhRsgensdHHfBaZaCwvleFB1V/UGXXdVbwjfXSoRHh4elm2NGB4ebrZCXXhvt3hv9yi7R5mg47rY9GlApU/YRWuEcjyouqt6g667qjeE7y6VCI+Ojsq2RoyOjjZboS68t1u8t3uU3aNM0HFdqDWir6MPcJsIK8eDqruqN+i6q3pD+O5SifDQ0JBsa8TQ0FCzFerCe7vFe7tH2T3KBB3XhVojutq6AEjnixPou0iEleNB1V3VG3TdVb0hfHepRDgej8tOnxaPx5utUBfe2y3e2z3K7lEm6LgWqN0aUd5eToBdJMLK8aDqruoNuu6q3hC+u1Qi3NfXJ9sa0dfX12yFuvDebvHe7lF2jzJBxzVfqN0aUd5eXlq5MmtEjQpyGCjHg6q7qjfouqt6Q/juUonw9PR0sTVC8Ga56enpZivUhfd2i/d2j7J7lAk6rnlbuzWivL08W4SLirByPKi6q3qDrruqN4TvLpUId3Z2yrZGdHZ2NluhLry3W7y3e5Tdo0zQcQ1SES4nwOXKcCMTYeV4UHVX9QZdd1VvCN9dKhHO5XKyrRG5XK7ZCnXhvd3ivd2j7B5lgo7rQtOnlbfPbY1oZCKsHA+q7qreoOuu6g3hu0slwsYY2dYIY0yzFerCe7vFe7tH2T3KBB3XqLVGKMeDqruqN+i6q3pD+O5SiXBLS4tsa0RLi9RQV/DebvHe7lF2jzJBx3UprREuEmHleFB1V/UGXXdVbwjfXWokstmsbGtENptttkJdeG+3eG/3KLtHmaDjWk9rRK3EOQyU40HVXdUbdN1VvSF8d6lEuKurS7Y1oqurq9kKdeG93eK93aPsHmWCjmvUWiOU40HVXdUbdN1VvSF8d6lEeGpqSrY1YmpqqtkKdeG93eK93aPsHmWCjutS5hEuJ8SNTISV40HVXdUbdN1VvSF8d6lEuL+/X7Y1or+/v9kKdeG93eK93aPsHmWCjmuQ1giXPcLK8aDqruoNuu6q3hC+e6CriTHmQmPMw8aYbcaY9y6w36uNMdYYsyk8xacZHx+XbY0YHx9vtkJdeG+3eG/3KLtHmaDjGrXWCOV4UHVX9QZdd1VvCN990auJMaYVuBZ4GbARuMIYs3Ge/fqAdwJ3hmpYxdDQkGxrxNDQULMV6sJ7u8V7u0fZPcoEHdd6llhuZCKsHA+q7qreoOuu6g3huwe5mjwb2Gat3WGtzQDXARfPs9/fA/8EpEL0m8XIyIhsa8TIyEizFerCe7vFe7tH2T3KBB3XIBVhl60RyvGg6q7qDbruqt4QvnuQq8ka4LGq53tL2yoYY04H1lprfxii2wEMDw/LtkYMDw83W6EuvLdbvLd7lN2jTNBxDTR92pzWiFqJcxgox4Oqu6o36LqrekP47sv+WG2MaQE+DvxNgH3fZozZbIzZvH//flKpFNPT00xNTZFOp0kkEuRyOcbHx7HWMjo6Cjyd/W/bto0W00ImkyGXy5FIJEin00xNTTE9PU0qlSKZTJLNZonH4xQKBWKx2KxjlL+OjY2Rz+eZmJggk8kwOTnJzMwMMzMzTE5OkslkmJiYIJ/PMzY2Nu8xYrEYhUKBeDxONpslmUzWPKcdO3bMe06jo6NYaxkfH4/kOe3evXvJ71MUzqn8b6nvU7PPac+ePaHHnotz2rFjh9PfpzDPafv27Ut+nzyLE7givJRZIwqNnzXCV8rco+oNuu6q3hC+u1msumqMeR7wd9baC0rP3wdgrf3H0vMBYDswWfqWw4Ax4CJr7eZax920aZPdvLnmyzXZ9B+bOLT3UH74+oYWnz0ej6cmxpi7rbUNuSk4qtR7zV6MMz9/JsPdw9z4hhsPeO3R2KMc/+/H89VLv8obT34j//vw/3LRdRex+U83c8YRZ4Tu4vF4/nCpdd0O8rH6LuA4Y8wGY0wH8DrghvKL1toJa+1qa+16a+164A4WSYLrZWxsTLY1olwFU8N7u8V7u0fZPcoEHdeoTZ+mHA+q7qreoOuu6g3huy96NbHW5oB3ADcBW4FvWWu3GGOuNsZcFKrNIgwMDMjOGjEwMNBshbrw3m7x3u5Rdo8yQcc1arNGKMeDqruqN+i6q3pD+O6BribW2huttcdba4+x1n6ktO1D1tob5tn3hY2oBgNMTk7KzhoxOTm5+E4RxHu7xXu7R9k9ygQd16jNI6wcD6ruqt6g667qDeG7S60st2LFCtnWiBUrVjRboS68t1u8t3uU3aNM0HFdqDWiXBGe2xpRq4IcBsrxoOqu6g267qreEL67VCKcyWRkWyMymUyzFerCe7vFe7tH2T3KBB3XhVojKtOnOWyNUI4HVXdVb9B1V/WG8N2lEuHW1lbZ1ojW1sZVMBqJ93aL93aPsnuUCTquS2mNKH9tZCKsHA+q7qreoOuu6g3hu0slwoBsa4TH4/F4DiRqN8t5PJ6DC6mrST6fl22NyOfzzVaoC+/tFu/tHmX3KBN0XKM2fZpyPKi6q3qDrruqN4TvLpUId3R0yLZGdHR0NFuhLry3W7y3e5Tdo0zQcY3arBHK8aDqruoNuu6q3hC+u1QiPDMzI9saobosq/d2i/d2j7J7lAk6rvnCAolwjdaIWvuHgXI8qLqreoOuu6o3hO8ulQj39vbKtkb09vY2W6EuvLdbvLd7lN2jTNBxjVprhHI8qLqreoOuu6o3hO8ulQhPTEzItkZMTEw0W6EuvLdbvLd7lN2jTNBxzdsFbpabO2tEofGzRijHg6q7qjfouqt6Q/juUonw4OCgbGvE4OBgsxXqwnu7xXu7R9k9ygQd13paIxqZCCvHg6q7qjfouqt6Q/juUonwyMiIbGvEyMhIsxXqwnu7xXu7R9k9ygQd1yCtES5vllOOB1V3VW/QdVf1hvDdpRLh4eFh2daI4eHhZivUhfd2i/d2j7J7lAk6rgu1RkAx6XXZI6wcD6ruqt6g667qDeG7SyXCIyMjsq0Rqp++vLdbvLd7lN2jTNBxXag1Aop9wi5bI5TjQdVd1Rt03VW9wVeEZVsjVD99eW+3eG/3KLtHmbAqwq0trQe0Riy0/3JRjgdVd1Vv0HVX9YaDvCIci8VkWyNisVizFerCe7vFe7tH2T3KBB3XhXqEwX1rhHI8qLqreoOuu6o3hO8ulQivWrVKtjVi1apVzVaoC+/tFu/tHmX3KBN0XJfSGlGuDDcyEVaOB1V3VW/QdVf1hvDdpRLhRCIh2xqRSCSarVAX3tst3ts9yu5RJsi4Wmux2CW3RjQyEVaOB1V3VW/QdVf1hvDdpRLhnp4e2daInp6eZivUhfd2i/d2j7J7lAkyrkESW9c3yynHg6q7qjfouqt6Q/juUolwKpWSbY1IpVLNVqgL7+0W7+0eZfdaGGMuNMY8bIzZZox5b419XmuMecgYs8UY842wHYKMa7nSu1BrhOseYeV4UHVX9QZdd1VvCN+9LdSjNZj29nbZ1oj29vZmK9SF93aL93aPsvt8GGNagWuB84G9wF3GmBustQ9V7XMc8D7gbGvtuDHmkLA9goxrudK75FkjFkicl4tyPKi6q3qDrruqN4TvLlURLhQKsq0RhYKeM3hv13hv9yi71+DZwDZr7Q5rbQa4Drh4zj5/ClxrrR0HsNbuD1siyLjW2xphjAnBsIaTcDyouqt6g667qjeE7y6VCFtrZVsjFJ3Be7vGe7tH2b0Ga4DHqp7vLW2r5njgeGPMr4wxdxhjLpzvQMaYtxljNhtjNu/fv59UKsX09DRTU1Ok02kSiQS5XI7x8XGstYyOjgLFCe/Lz621jI+Pk8vlSCQSpNNppqamiseZmSr+IAvxeJxCoVCZGqkyab6FAgXGxsbI5rO0mBYymQyTk5PMzMwwMzPD5OQkmUyGiYkJ8vk8Y2Njs45R/hqLxSgUCsTjcbLZLMlk8oBzSiaTNc8JWPScUqkUyWSSbDZb85zKX8fGxsjn80xMTDT0nBZ6n6JwTnOP9YdwTlF/n8bHx2XPaXx8vK73qRamWf8JbNq0yW7evHlJ35NOp3nT/76J+5+6n61v39ogs8aQTqfp7OxstsaS8d5u8d7uqcfdGHO3tXZTg5SWhTHmMuBCa+1VpedXAs+x1r6jap8fAFngtcCRwO3ASdbaeK3jLvWaHWRcx2fGGbxmkE9c8An+6rl/Ne8+G/51A89f93z+69L/4gO3fIBrfn0N2f8vG9hjqRxssRwFVL1B113VG+p3r3XdlqoIp9Np2daIdDrdbIW68N5u8d7uUXavwePA2qrnR5a2VbMXuMFam7XW7gQeAY4LUyLIuAbp+W01s3uEG3mjHGjHg6q7qjfouqt6Q/juUolwd3e3bGtEd3d3sxXqwnu7xXu7R9m9BncBxxljNhhjOoDXATfM2ee/gRcCGGNWU2yV2BGmRJBxDbJAxtxZIxqdCCvHg6q7qjfouqt6Q/juUolwMpmUnTUimUw2W6EuvLdbvLd7lN3nw1qbA94B3ARsBb5lrd1ijLnaGHNRabebgJgx5iHgNuDd1tpQ1y0NMq6BZ42oulmukTNGgHY8qLqreoOuu6o3hO8uNX3aypUrZVsjVq5c2WyFuvDebvHe7lF2r4W19kbgxjnbPlT12AJ/XfrXEIKMa5B5hF23RijHg6q7qjfouqt6Q/juUhXhWCwm2xpRvnNTDe/tFu/tHmX3KBNkXANNn1ZVEc7bfMMTYeV4UHVX9QZdd1VvCN9dKhFevXq1bGvE6tWrm61QF97bLd7bPcruUSbIuAZpjXDdI6wcD6ruqt6g667qDeG7SyXCIyMjsq0RlTkxxfDebvHe7lF2jzJBxjWKrRHK8aDqruoNuu6q3hC+u1QiPDw8LNsaMTw83GyFuvDebvHe7lF2jzJBxnWprREuEmHleFB1V/UGXXdVbwjfXSoRHh0dpQXN1ojyaipqeG+3eG/3KLtHmSDjGsXWCOV4UHVX9QZdd1VvCN9dKhEeGhrCGM3WiKGhoWYr1IX3dov3do+ye5QJMq71tEYslDSHgXI8qLqreoOuu6o3hO8ulQjH43EMmq0R8Xi82Qp14b3d4r3do+weZYKMa2VluSXMI9zoirByPKi6q3qDrruqN4TvLpUI9/X1yc4a0dfX12yFuvDebvHe7lF2jzJBxrWc4C7YI1xVEXYxfZpyPKi6q3qDrruqN4TvLpUIT09Py7ZGTE9PN1uhLry3W7y3e5Tdo0yQcQ3SGuG6R1g5HlTdVb1B113VG8J3l0qEOzs7ZVsjOjs7m61QF97bLd7bPcruUSbIuNazxHKjE2HleFB1V/UGXXdVbwjfXSoRzuVysq0RuVyu2Qp14b3d4r3do+weZYKMa6Dp0xzPI6wcD6ruqt6g667qDeG7SyXCxhjZ1ghjTLMV6sJ7u8V7u0fZPcoEGdd6WiMW2jcMlONB1V3VG3TdVb0hfHepRLilpUW2NaKlRWqoK3hvt3hv9yi7R5kg4xrF1gjleFB1V/UGXXdVbwjfXWokstmsbGtENptttkJdeG+3eG/3KLtHmSDjutTWiHyh8bNGKMeDqruqN+i6q3pD+O6BrijGmAuNMQ8bY7YZY947z+t/box5wBhzrzHml8aYjaFalujq6pJtjejq6mq2Ql14b7d4b/cou0eZIOMatDXCZUVYOR5U3VW9Qddd1RvCd1/0imKMaQWuBV4GbASumCfR/Ya19iRr7anANcDHQ7UsMTU1JdsaMTU11WyFuvDebvHe7lF2jzJBxjVoa4TL6dOU40HVXdUbdN1VvSF89yBXlGcD26y1O6y1GeA64OLqHay1iaqnPdCY3oX+/n7Z1oj+/v5mK9SF93aL93aPsnuUCTKulZXllrDEcqMTYeV4UHVX9QZdd1VvCN89yBVlDfBY1fO9pW2zMMa83RiznWJF+P+Z70DGmLcZYzYbYzbv37+fVCrF9PQ0U1NTpNNpEokEuVyO8fFxrLWMjo4CMDIyAsDOnTsBKBQK5HI5EokE6XSaqakppqenSaVSJJNJstks8XicQqFALBabdYzy17GxMfL5PBMTE2QyGSYnJ5mZmWFmZobJyUkymQwTExPk83nGxsbmPUYsFqNQKBCPx8lmsySTyZrntGfPnnnPaXR0FGst4+PjkTynxx9/fMnvUxTOaXx8vK73qdnntG/fvtBjz8U57d692+nvU5jntGvXriW/T57FGR8fX3SfcoK7YI/wnJvlFqoeh0EQ76ii6q7qDbruqt4QvrtZrM3AGHMZcKG19qrS8yuB51hr31Fj/9cDF1hr37zQcTdt2mQ3b968ZOF33/xurr3rWqY/oLsqisfj0cYYc7e1dlOzPVxS7zV7If7n9//DJddfwt1vu5vTDz993n3e/N9v5ue7fs6uv9rFy7/+cmIzMe686s5QPTwezx8+ta7bQSrCjwNrq54fWdpWi+uAS5ZkF5CRkRHZ1ohylUkN7+0W7+0eZfcoE2Rcg9ws57o1QjkeVN1VvUHXXdUbwncPckW5CzjOGLPBGNMBvA64oXoHY8xxVU9fATwanuLTDA8Py84aMTw83GyFuvDebvHe7lF2jzJBxjXw9Gml1oi8bfz0acrxoOqu6g267qreEL77olcUa20OeAdwE7AV+Ja1dosx5mpjzEWl3d5hjNlijLkX+GtgwbaIehkZGZGdNUL105f3dov3do+ye5QJVBEOMGtEi2nxFeGAqLqreoOuu6o3hO/eFmQna+2NwI1ztn2o6vE7Q7WqwfDwsGxrhOqnL+/tFu/tHmX3KBNkXAO1RjiePk05HlTdVb1B113VG5pQEY4SY2Njsq0R5Tvl1fDebvHe7lF2jzJBxnWprREuEmHleFB1V/UGXXdVbwjfXSoRHhgYkG2NGBgYaLZCXXhvt3hv9yi7R5kg4xp0QY3q1oiFqsdhoBwPqu6q3qDrruoN4btLJcKTk5OyrRGTk5PNVqgL7+0W7+0eZfcoE2Rcgy6x7LI1QjkeVN1VvUHXXdUbwneXSoRXrFiBMQZAriq8YsWKZivUhfd2i/d2j7J7lAkyrpWV5RaqCFfPGlFo/KwRyvGg6q7qDbruqt4QvrtUIpzJZDCUEmGxqnAmk2m2Ql14b7d4b/cou0eZIONaTnAXXVnO4awRyvGg6q7qDbruqt4QvrtUItza2lq5CKpVhFtbG9vX1ii8t1u8t3uU3aNMkHEN2hrh8mY55XhQdVf1Bl13VW8I310qEQYqrRGKM0d4PB6P52kC3Sxn3E6f5vF4Di6krij5fF62NSKfzzdboS68t1u8t3uU3aNMkHENNH1aSysWi7W2OGvEAklzGCjHg6q7qjfouqt6Q/juUolwR0eHbGtER0dHsxXqwnu7xXu7R9k9ygQZ16CtEeV9XVSEleNB1V3VG3TdVb0hfHepRHhmZka2NWJmZqbZCnXhvd3ivd2j7B5lgoxr0NYIKF7z87bxs0Yox4Oqu6o36LqrekP47lKJcG9vr2xrRG9vb7MV6sJ7u8V7u0fZPcoEGdegrRFQTJpdVISV40HVXdUbdN1VvSF8d6lEeGJionIRVKsIT0xMNFuhLry3W7y3e5Tdo0yQcQ3SGlF+zVVrhHI8qLqreoOuu6o3hO8ulQgPDg7KJsKDg4PNVqgL7+0W7+0eZfcoE2Rcg7RGVF/zXSTCyvGg6q7qDbruqt4QvrtUIjwyMkJbSxvw9AVUhZGRkWYr1IX3dov3do+ye5SpHtcnkk9wyXWX8Hji8Vn7VFaWW6giPKc1YqF9w0A5HlTdVb1B113VG8J3l0qEh4eHKxfFXCHXZJulMTw83GyFuvDebvHe7lF2jzLV4/q7J37H/zz8P3z4Zx+etU+5NaJ8E/R8uG6NUI4HVXdVb9B1V/WG8N2lEuFZFWHrK8Iu8N5u8d7uUXaPMtXjmi1kAfjyvV/m4dGHK9vzhfyiFd7K9GmObpZTjgdVd1Vv0HVX9QZfEa4kwr4i7Abv7Rbv7R5l9yhTPa7ZfDERztv8rKpw3uYXXSCj/HrBFsgXGj99mnI8qLqreoOuu6o3HOQV4VgsVqkeqCXCsVis2Qp14b3d4r3do+weZarHtVwRfs3G13D9luu554l7gGBLJrtujVCOB1V3VW/QdVf1hvDdpRLhVatWyd4st2rVqmYr1IX3dov3do+ye5SpHtdyRfh957yP9pZ2rnvwOiBYa4TreYSV40HVXdUbdN1VvSF8d6lEOJFIyN4sl0gkmq1QF97bLd7bPcruUaZ6XMsV4dXdq+nt6GUmV1wZKkhrhOvp05TjQdVd1Rt03VW9IXx3qUS4p6dH9ma5np6eZivUhfd2i/d2j7J7lKke13JFuL21nY7WDjL5DFBfa0Sjp09TjgdVd1Vv0HVX9Ybw3aUS4VQqJdsjnEqlmq1QF97bLd7bPcruUaZ6XMsV4faWdtpb2yuJcBRbI5TjQdVd1Rt03VW9IXx3qUS4vb1dtke4vb292Qp14b3d4r3do+weZarHtVZFeCmtEXmbJ28bP2uEcjyouqt6g667qjeE7y6VCBcKBdke4UJBa0noMt7bLd7bPcruUaZ6XKsrwh2tHZXnQVodyq+76hFWjgdVd1Vv0HVX9Ybw3aUSYWutbI+wtbbZCnXhvd3ivd2j7B5lqse1ZkU4wLzArlsjlONB1V3VG3TdVb0hfHepRLitrU22R7itra3ZCnXhvd3ivd2j7B5lqse1fL1uNa3Lao1wkQgrx4Oqu6o36LqrekP47lKJcDqdll1ZLp1ON1uhLry3W7y3e5Tdo0z1uGYLWdpb2jHG0N7SPjsRXmJrxGKJ83JRjgdVd1Vv0HVX9Ybw3aUS4e7ubtmb5bq7u5utUBfe2y3e2z3K7rUwxlxojHnYGLPNGPPeBfZ7tTHGGmM2he1QPa7ZfJb21uINLkuePs1xa4RyPKi6q3qDrruqN4TvLpUIJ5NJ2ZvlkslksxXqwnu7xXu7R9l9PowxrcC1wMuAjcAVxpiN8+zXB7wTuLMRHtXjWq4IQzERLvcM5wuLt0a4XmJZOR5U3VW9Qddd1RvCd5dKhFeuXCl7s9zKlSubrVAX3tst3ts9yu41eDawzVq7w1qbAa4DLp5nv78H/gloyISi1eNaqyIcpDWi0iPsqCKsHA+q7qreoOuu6g3hu0slwrFYTPZmuVgs1myFuvDebvHe7lF2r8Ea4LGq53tL2yoYY04H1lprf7jQgYwxbzPGbDbGbN6/fz+pVIrp6WmmpqZIp9MkEglyuRzj4+NYaxkdHQVgZGSEWCzG6Ogo1lomZyZpb2knkUjQSiupbPE42VwWLGSzWeLxOIVCofJ+jIyMAJBMFKs/YxNjAGTSGTKZDJOTk8zMzDAzM8Pk5CSZTIaJiQny+TxjY2OzjlH+GovFKBQKxONxstksyWTygHPas2dPzXMCKuc0Pj5OLpcjkUiQTqeZmppienqaVCpFMplc8JzKX8fGxsjn80xMTIRyTk899dS857TQ+xSFc9q+ffuS36eonNPevXtDiz2X57Rz585QY8/lOe3cubOu2KuFadYUGps2bbKbN29e8vfd9+R9nPq5U/nea7/Hpc+4tAFmHo/HszDGmLuttaH31YaBMeYy4EJr7VWl51cCz7HWvqP0vAW4FXiLtXaXMeZnwLustQtekOu9ZgO89X/eyq07b2X3X+3m8u9czn1P3sfv3/F7LrnuEnbGd3Lfn99X83t/vuvnvPArL+SmN97EBV+7gL9/0d/zwRd8sC4Pj8dz8FLrui1VER4ZGZHtES5/YlHDe7vFe7tH2b0GjwNrq54fWdpWpg94FvAzY8wu4LnADWHfMFc9rtn8nB7h0oIaS2mNKPcVN7o1QjkeVN1VvUHXXdUbwneXSoSHh4dle4SHh4ebrVAX3tst3ts9yu41uAs4zhizwRjTAbwOuKH8orV2wlq72lq73lq7HrgDuGixivBSqR7XbKGqR7hl9qwRi94sN6f4sVjivFyU40HVXdUbdN1VvSF8d6lEeHR0VLZHuNwXo4b3dov3do+y+3xYa3PAO4CbgK3At6y1W4wxVxtjLnLlUT2ucyvCS1pZrnTNL1eRG10RVo4HVXdVb9B1V/WG8N2llhYZGhoiGS/eOKGWCA8NDTVboS68t1u8t3uU3Wthrb0RuHHOtg/V2PeFjXCoHtfqinB76xIX1ChVhF21RijHg6q7qjfouqt6Q/juUhXheDw+a3J1JeLxeLMV6sJ7u8V7u0fZPcpUj2s2n620tc2tCAddYrn8PY1OhJXjQdVd1Rt03VW9IXx3qUS4r69Pdonlvr6+ZivUhfd2i/d2j7J7lKke11oLagRaWW5OO1yjE2HleFB1V/UGXXdVbwjfXSoRnp6elr1Zbnp6utkKdeG93eK93aPsHmWqx3XughrZQhZr7dJaIxz1CCvHg6q7qjfouqt6Q/juUolwZ2en7M1ynZ2dzVaoC+/tFu/tHmX3KFM9rnMrwuVtS2mNKFeRF9t/uSjHg6q7qjfouqt6Q/jugRJhY8yFxpiHjTHbjDHvnef1vzbGPGSMud8Yc4sx5qhQLUvkcrmnK8JiPcK5nFbiXsZ7u8V7u0fZPcpUj2t1RbicEGfymUi2RijHg6q7qjfouqt6Q/jui15RjDGtwLXAy4CNwBXGmI1zdrsH2GStPRn4DnBNqJZPu8guqGGMabZCXXhvt3hv9yi7R5nqcZ2vIpzJZyLZGqEcD6ruqt6g667qDeG7B7miPBvYZq3dYa3NANcBF1fvYK29zVpbbtq4g+JKRqHT0tIi2yPc0iLVhVLBe7vFe7tH2T3KVI/r3B7h8rZ6WiManQgrx4Oqu6o36LqrekP47kGOtgZ4rOr53tK2WvwJ8KP5XjDGvM0Ys9kYs3n//v2kUimmp6eZmpoinU6TSCTI5XKMj49jra1MmlxeTm///v20lJQzuQyJRIJ0Os3U1BTT09OkUimSySTZbJZ4PE6hUCAWi806Rvnr2NgY+XyeiYkJMpkMk5OTzMzMMDMzw+TkJJlMhomJCfL5PGNjY/MeIxaLUSgUiMfjZLNZkslkzXOKxWLzntPo6CjWWsbHx8nlcpE7p3g8vuT3KQrnlM1m63qfmn1O5W1hxp6LcxodHXX6+xTmOc31CPI+eRYnm80+/bhGRbhgC4tXhB0vqFHtrYaqu6o36LqrekP47sZau/AOxlwGXGitvar0/ErgOdbad8yz7xsprmh0rrU2vdBxN23aZDdvXtqKntlslta2VlqvbuXvzv07PvzCDy/p+5tJNpulvb292RpLxnu7xXu7px53Y8zd1tpNDVKKJEu9ZleP6/pPrufc9efylUu+wlfv+ypv+u83se0vt3HJ9Zdw3OBxfO/y79U8zt7EXtZ+Yi3vP+f9fPSXH+U/L/5P3nLqW5Z7OoG81VB1V/UGXXdVb6jfvdZ1O8hH68eBtVXPjyxtm/sDXgJ8gOKa9QsmwfUyNTVFi2mho7WD6azW1B9TU1PNVqgL7+0W7+0eZfcoUz2u1RXhcotEJp8J1BoxtyK8WAV5uSjHg6q7qjfouqt6Q/juQRLhu4DjjDEbjDEdwOuAG6p3MMacBnyOYhK8P1TDKvr7+wFY1bWKeCreqB/TEMruanhvt3hv9yi7R5nqcc3ma0yfFuBmOdc9wsrxoOqu6g267qreEL77olcUa22OYrvDTcBW4FvW2i3GmKuNMReVdvsY0At82xhzrzHmhhqHWxbj4+MArFqxivHUeCN+RMMou6vhvd3ivd2j7B5lqsc1WzjwZrnA06e1uJ0+TTkeVN1VvUHXXdUbwndvC7KTtfZG4MY52z5U9fgloVrVYGhoCChWhMdmxlz8yNAou6vhvd3ivd2j7B5lqsd1vopwva0RjU6EleNB1V3VG3TdVb0hfHep+TPKd3MrVoTL7mp4b7d4b/cou0eZ6nGtVRFeSmtEJp+Z9bxRKMeDqruqN+i6q3pD+O5SifDw8DBQrAiPz2glwmV3Nby3W7y3e5Tdo0z1uFZXhJe8spzj1gjleFB1V/UGXXdVbwjfXSoRrlSEu3xF2BXe2y3e2z3K7lGmPK75Qh6Lrb2gRsTmEVaOB1V3VW/QdVf1Bl8RBuDwvsOJp+JMZXSm/1D99OW93eK93aPsHmXK41pOYGsusbxYj3B5ieXSrBGL7b9clONB1V3VG3TdVb3hIK8Il1ekOnbwWAC2j29vps6SKLur4b3d4r3do+weZcrjWk5ga80aEXj6NEcVYeV4UHVX9QZdd1VvCN9dKhEeGBgAnk6EH4092kydJVF2V8N7u8V7u0fZPcqUx3VuRXjughqL9gib2RXhRifCyvGg6q7qDbruqt4QvrtUIjw5OQnAUQNHAcWlN1Uou6vhvd3ivd2j7B5lyuO6UEU4SGuEMQaDcVYRVo4HVXdVb9B1V/WG8N2lEuEVK1YA0NXWBTw9nY4CZXc1vLdbvLd7lN2jTHlca/UIZwvZQK0RUEx+XVWEleNB1V3VG3TdVb0hfHepRDiTKSa+1RUFFcruanhvt3hv9yi7R5nyuC5YEQ7QGgHFG+RcTZ+mHA+q7qreoOuu6g3hu0slwq2txcpBW0txQTylRLjsrob3dov3do+ye5Qpj+tyZ42AYp9w+ThBKsjLQTkeVN1VvUHXXdUbwneXSoTLGGPobO2USoQ9Ho/nYGRuRbh6QY0g8wiD29YIj8dzcCF1Rcnn85XHHa0dpPPpJtosjWp3Jby3W7y3e5Tdo0x5XGvNGpHNZwOtLAfF1ghXN8spx4Oqu6o36LqrekP47lKJcEdHx9OPWzukKsLV7kp4b7d4b/cou0eZ8rjOrQi3mBbaWtpI59NYbPDWCEcVYeV4UHVX9QZdd1VvCN9dKhGemZmpPFZLhKvdlfDebvHe7lF2jzLlcZ1bEYbi9XsmW3w9SGuEy4qwcjyouqt6g667qjeE7y6VCPf29lYeqyXC1e5KeG+3eG/3KLtHmfK4lmd7KFeEoXj9TuVSQLAlk132CCvHg6q7qjfouqt6Q/juUonwxMRE5bFaIlztroT3dov3do+ye5Qpj2ulNaKqItze0k4qX0yEA/UIm6enTwuSOC8H5XhQdVf1Bl13VW8I310qER4cHKw8VkuEq92V8N5u8d7uUXaPMuVxrbRGtGq0RijHg6q7qjfouqt6Q/juUonwyMhI5bFaIlztroT3dov3do+ye5Qpj+t8FeEot0Yox4Oqu6o36LqrekP47lKJ8PDwcOWx2vRp1e5KeG+3eG/3KLtHmfK41qwI54oV4aCtEa4qwsrxoOqu6g267qreEL67VCJc/Smgs01rQQ3VT1/e2y3e2z3K7lFmsYrwklsjfEV4UVTdVb1B113VG3xFuPJYrTVC9dOX93aL93aPsnuUmVsRbmtpq7zW3tq+pNYIXxEOhqq7qjfouqt6w0FeEY7FYpXHaolwtbsS3tst3ts9yu5RpjyucxfUgNk9wkES2+p9Gp0IK8eDqruqN+i6q3pD+O5SifCqVasqj9US4Wp3Jby3W7y3e5Tdo0x5XGsuqJFbWmtE5XGA/ZeDcjyouqt6g667qjeE7y6VCCcSicpjtUS42l0J7+0W7+0eZfcoUx7XWhXhSo9wwNaIMo2uCCvHg6q7qjfouqt6Q/juUolwT09P5bFaIlztroT3dov3do+ye5Qpj2utinClRzhAhddla4RyPKi6q3qDrruqN4TvLpUIp1KpyuOOlg7SuTSj06PEpqPf61LtroT3dov3do+ye5Qpj+t8FeH2lvYl9QhXV40bnQgrx4Oqu6o36LqrekP47m2L7xId2tufvpB2t3cznZ1m+GPFuwfth22ztAJR7a6E93aL93aPsnuUKY/roj3CEWuNUI4HVXdVb9B1V/WG8N2lKsKFQqHyuKejh8nMZBNtlka1uxLe2y3e2z3K7lGmPK61eoQLtvh61FojlONB1V3VG3TdVb0hfHepRNjap6u+Pe09lUqDAtXuSnhvt3hv9yi7R5nyuGYLWVpMy6wEtqO1o/J4qa0RQSrIy0E5HlTdVb1B113VG8J3l0qE29qe7uTo7ehtosnSqXZXwnu7xXu7R9k9ypTHNZvPzmqLgNltElFrjVCOB1V3VW/QdVf1hvDdpRLhdDpdedzToXXHY7W7Et7bLd7bPcruUaY8rtlCdlZbBMyuCC91HuFGJ8LK8aDqruoNuu6q3hC+u1Qi3N3dXXnc066VCFe7K+G93eK93aPsHmXK4zpfRXiprREue4SV40HVXdUbdN1VvSF8d6lEOJlMVh6rVYSr3ZXw3m7x3u5Rdo8y5XFdtCIcsdYI5XhQdVf1Bl13VW8I310qEV65cmXl8dwe4fKdyVGl2l0J7+0W7+0eZfcoUx7XxSrCUWuNUI4HVXdVb9B1V/WG8N2lEuFY7OmFM+a2RpTnpIwq1e5KeG+3eG/3KLtHmfK4zlcRrn4epCJcnfwGSZyXg3I8qLqreoOuu6o3hO8ulQivXr268nhua8R0dtq1zpKodlfCe7vFe7tH2T3KlMc1W1h+j7DL1gjleFB1V/UGXXdVbwjfXSoRHhkZqTyeWxGeyky51lkS1e5KeG+3eG/3KLtHmfK4ZvNas0Yox4Oqu6o36LqrekP47lKJ8PDwcOXx3B7hqFeEq92V8N5u8d7uUXavhTHmQmPMw8aYbcaY987z+l8bYx4yxtxvjLnFGHNU2A7lcV2sIhy1m+WU40HVXdUbdN1VvSF8d6lEeHR0tPJ4bmvErvguxzZLo9pdCe/tFu/tHmX3+TDGtALXAi8DNgJXGGM2ztntHmCTtfZk4DvANWF7lMd1sYpw1KZPU44HVXdVb9B1V/WG8N2lEuGhoaHK4+722fPI/WzXzxzbLI1qdyW8t1u8t3uU3WvwbGCbtXaHtTYDXAdcXL2DtfY2a235z2h3AEeGLVEe1/kqwrNWlotYa4RyPKi6q3qDrruqN4TvHuiKEuDPbC8wxvzOGJMzxlwWqmEV8Xi88njuxXBHfAc/3/Vz3vmjdzbqxy+LanclvLdbvLd7lN1rsAZ4rOr53tK2WvwJ8KP5XjDGvM0Ys9kYs3n//v2kUimmp6eZmpoinU6TSCTI5XKMj49jra1UakZGRojH44yOjpLNZzEFQy6XI5FIkE6nKeQKlZ+RmkmRzWaJx+MUCoXKHeHlPsCRkZFZyXIikSCTyTA5OcnMzAwzMzNMTk6SyWSYmJggn88zNjZ2wDGgeLd5oVAgHo+TzWZJJpMHnNPjjz9e85ygWI2y1jI+Pj7rnKamppieniaVSpFMJhc9J4CxsTHy+TwTExOhnNPo6Oi857TQ+xSFc9q5c+eS36eonNO+fftCiz2X57Rnz55QY8/lOe3evbuu2KuFsdbWfBEqf2Z7BDif4gX1LuAKa+1DVfusB/qBdwE3WGu/s+BBgU2bNtnNmzcvttsscrncrDWmzf8xlccXHHMBN22/CYD8h/INrxoslbnuKnhvt3hv99Tjboy521q7qUFKy6JUjLjQWntV6fmVwHOste+YZ983Au8AzrXWLrhu6VKv2eVxPftLZ7OibQU/fdNPK69996Hvctm3izWTu992N6cffvqCx3rLf7+Fr9z3FVpNK7kP5QI71MPBFstRQNUbdN1VvaF+91rX7SDZYpA/s+2y1t4PFOY7QFhMT9e+IW4q+/SsEZOZ2pl/s1jIPcp4b7d4b/cou9fgcWBt1fMjS9tmYYx5CfAB4KLFkuB6KI9rKLNGlPZxUeBQjgdVd1Vv0HVX9Ybw3YNcVZb6Z7aG0dnZOe/2rrYuprPTlYtkIp1wqRWIWu5Rx3u7xXu7R9m9BncBxxljNhhjOoDXATdU72CMOQ34HMUkeH8jJMrjGsqsES3uEmHleFB1V/UGXXdVbwjf3Wn/wHL6zQD2798/q5ekzMahjUylpyoX19hkzHlv1mL9MbFYLJK9WYud08TERGR7sxY6p1wu1/Q+pnrOqbwtqr1Ztc5pdHRUtt9s7jGCvE9Rxlqbo9jucBOwFfiWtXaLMeZqY8xFpd0+BvQC3zbG3GuMuaHG4eqmfI2eryI8a2W5ABXhcgLsIhGu/r9FDVV3VW/QdVf1hvDdg/QIPw/4O2vtBaXn7wOw1v7jPPt+GfhBo3qEp6en6e5+eraIco/wG09+I7fvvp2J1AQT6Qnu+JM7eM6Rz1nSsRvNXHcVvLdbvLd76nGPco9wo1jqNbs8rif8+wmcdthpXHfZdZXXfrnnlzz/P58PwO/f/ntOWH3Cgsd6+w/fzqc3f5qe9h4m39/Y1reDLZajgKo36LqrekP97svpEV70z2yuaGmZX7e/o5/p7DSdbcVyeRRbI2q5Rx3v7Rbv7R5l9yhTHtdFe4Qj1hqhHA+q7qreoOuu6g3huy96tCB/ZjPGnGmM2Qu8BvicMWZLqJYlstnsrOeP/uWj3PNn99Dd3s3o9Cj7p4qtblFMhOe6q+C93eK93aPsHmXK47poj/ASbpYLkjQvF+V4UHVX9QZdd1VvCN890PwT1tobgRvnbPtQ1eO7aMCE7HPp6uqa9fzYwWMB+P7W78/aHsVEeK67Ct7bLd7bPcruUaY8rtn8wgtqLGVlORcVYeV4UHVX9QZdd1VvCN9dqjY+NTU17/a5q8xNpCdc6CyJWu5Rx3u7xXu7R9k9ypTHNVvQao1QjgdVd1Vv0HVX9Ybw3aUS4f7+/nm393T0zHo+MjVSeTyTneGeJ+5pqFcQarlHHe/tFu/tHmX3KFMe1/kqwlGeR1g5HlTdVb1B113VG8J3l0qEx8fH590+tyL81NRTlcdXfv9KTv+P04mn4o1UW5Ra7lHHe7vFe7tH2T3KlMc1V8gtWBGOWmuEcjyouqt6g667qjeE7y6VCA8NDc27fXDF4Kzn1YnwT3b8BCiuNrfYVHGNpJZ71PHebvHe7lF2jzLlcc0WsrS1zL4dJcqtEcrxoOqu6g267qreEL67VCJcnuh+Lof0HDLr+VOTTyfCU5liL8naT6zlH27/h8bJLUIt96jjvd3ivd2j7B5lRkZGsNYWK8Jzb5Zb4oIalVkjAuy7XJTjQdVd1Rt03VW9IXx3qUR4eHh43u0HJMJVFeG8zVceX3vXtY0RC0At96jjvd3ivd2j7B5lhoeHyRWKK0Ap3SynHA+q7qreoOuu6g3hu0slwkupCM/XBpEtNG/ePNVPX97bLd7bPcruUWZkZKRyzVWaPk05HlTdVb1B113VG3xFeN7tfR19s56n8+l55xLO5DMN8QqC6qcv7+0W7+0eZfcoMzw8TDZfSoTnVIRbW1qX1O7gctYI5XhQdVf1Bl13VW84yCvCY2Nj8243xvDaZ7521rbq9ogy5YtyM6jlHnW8t1u8t3uU3aPM2NhYzYowPN0eEbXWCOV4UHVX9QZdd1VvCN890MpyUWFgYKDma9dfdj0nDJ1AV1sXH7j1Azw1+RTHDx0/a59mVoQXco8y3tst3ts9yu5RZmBggP3TxWXv51aEy9tmcjORa41QjgdVd1Vv0HVX9Ybw3aUqwpOTkwu+fvWLruaVx78SgCcnnzygT9jSvOnTFnOPKt7bLd7bPcruUWZycjJYRThirRHK8aDqruoNuu6q3hC+u1QivGLFikX3OWbVMbSaVh7Y/wDT2el599kzsYc//8Gfk86lw1asSRD3KOK93eK93aPsHmVWrFhRs0cYiomwwWCMWfRY5daIIG0Uy0U5HlTdVb1B113VG8J3l0qEM5nFWxt6Ono4+dCT+c3e35DMJA943VrL3/70b/nc3Z/jW1u+1QjNeQniHkW8t1u8t3uU3aNMJpNZtCIctMLrsjVCOR5U3VW9Qddd1RvCd5dKhFtbg1UDTlh9Arvju0mmD0yEp7PT9HcU16l+03+/qbLgRqMJ6h41vLdbvLd7lN2jTGtr66IV4aAVXpetEcrxoOqu6g267qreEL67VCIclIHOASbSE3zkFx854LWxmTFWd6+uPN8zscelmsfj8Rw0LFQRbm9pD7xSnMtZIzwez8GF1FUln88vvhOlRDg1wVfu+8oBr42nxmctrLE3sTc0v4UI6h41vLdbvLd7lN2jTD6fl6wIK8eDqruqN+i6q3pD+O5SiXBHR8fiOwEDXQOk8/PfCDc+Mz6rZcJVIhzUPWp4b7d4b/cou0eZjo4OyR5h5XhQdVf1Bl13VW8I310qEZ6ZmQm030Bn7TnmxmbGSGaSrOlbA8CO8R2huC1GUPeo4b3d4r3do+weZWZmZhavCC+xNSLo/stBOR5U3VW9Qddd1RvCd5dKhHt7ewPtN9B1YCJ8xuFnAMXWiGQmyVD3EOesO4dvPvjNA+YbbgRB3aOG93aL93aPsnuU6e3tXbQiHMXWCOV4UHVX9QZdd1VvCN9dKhGemJgItF9fR1/l8Scv+CSj7x7lpjfeBBRbIyYzk/R19HHZMy5j+/h29k/tb4hvNUHdo4b3dov3do+ye5SZmJhYsCLc3toeydYI5XhQdVf1Bl13VW8I310qER4cHAy0X/VSyn2dfQx1DzG4YpBW08ro9Cj3PXkfvR29PPOQZwKwZWRLQ3yrCeq+VHKFHJOZxq0Q0yjvRuO93aLqDdruUWZwcHDxinAEZ41QjgdVd1Vv0HVX9Ybw3aUS4ZGRkUD7XXTCRZXH3e3dABhjWNm1kuu3XE9sJsahvYfyzOFiIvzAUw+ELzuHoO5L5U3ffxN9/9jXsPaORnk3Gu/tFlVv0HaPMiMjI5KzRijHg6q7qjfouqt6Q/juUonw8PBwoP062zp5w0lvAGZXhwdXDLIzvhOAa15yDYf1HsaavjXc8fgd4cvOIaj7Uvnmg98EijcBNoJGeTca7+0WVW/Qdo8yw8PDoc0a4bIirBwPqu6q3qDrruoN4btLJcJL+RRwZP+RwOwL8KoVqwDo7+znkJ5DMMZwzrpzuH337RRsIVzZOTT601ejZr9Q/dTovd2i6g3a7lFmsYrwBcdcwKuf8epAxyonwEEryMtBOR5U3VW9Qddd1Rt8RTjwvh8+98N88oJP8tpnvraybXBFsa/kmFXHYIwB4JXHv5J9yX3cufdOcoUcuUIuXOkSjfj09djEY5XH28e3h3580P3U6L3douoN2u5RZrGK8JtOeRMfv+DjgY7lsjVCOR5U3VW9Qddd1RsO8opwLBYLvO+K9hW887nvnFVBOKz3MACOGTymsu2iEy6is7WT67dcz+H/cjgv/PILQ/OtZinuQbh5+82s++S6yvMrvnsFZ/zHGaH+DAjf2xXe2y2q3qDtHmVisdiCFeGl4LI1QjkeVN1VvUHXXdUbwneXSoRXrVq1rO8/ZlUxAT6059DKtv7Ofs4/5nz+9c5/ZXR6lF899qtl/YxaLNd9Lh/9xUcrjy/beBkAv3vid6H+DAjf2xXe2y2q3qDtHmVWrVq1YEV4KbicPk05HlTdVb1B113VG8J3l0qEE4nEsr5/RdsKgANmWDjl0FNmPY+n4gd876OxR5lI1T933XLdDzheuni8n1z5E8468qzK9rBnjwjb2xXe2y2q3qDtHmUSiUR4FWGHrRHK8aDqruoNuu6q3hC+u1Qi3NPTs6zvv/jEiwH449P+eNb2tf1rZz3/51//M7Hpp0vvP972Y47/9+N55TdfWffPXq77XHZP7OYvNv0FLzn6JRw/dHxl+3e3fpcHnnogtFkkwvZ2hfd2i6o3aLtHmZ6entAqwi5bI5TjQdVd1Rt03VW9IXx3qUQ4lUot6/uPHTwW+2HLGUfM7qUtL6xR5iO/+AiXf+dyoFgJvvi6YgL9yz2/5JCPHcJMdoabtt1EvpB35g7w4P4H2bxvM7lCjrGZMYa7iw3jLz/u5Zx/9PkAvObbr+Hkz57MmZ8/c9k/D8Lxbgbe2y2q3qDtHmVSqVRoFWGXrRHK8aDqruoNuu6q3hC+u1Qi3N6+vItpLc5Zdw6P/uWjFD5U4IzDi0nyLTtvYc3H13D8vx9PJp/hl2/9JQAj0yOc8tlTuPDrF/KBWz/Anz4GbAAAFv5JREFUI7FHGJ0enXW8+doTlus+PjPOSZ85iTM/fya/eew3AAz3FBNhYwwfOe8js/bfMb6DPRN7lvUzoXFj3mi8t1tUvUHbPcq0t7dXKsJBV5CrRfn7l3ucICjHg6q7qjfouqt6Q/juUolwodC4uX6PHTwWYwx3XnUnT/zNEwDsS+6rvH72urOJvSfGW099K4+OPQrAP/3qnzjh30/g5M+czJu+/yY+eOsH+dSdn6Ll6hbM/zHc+OiNTGenQ3HfOrq18vgFX34BAIf0HFLZduaaM4m9J8Yv3voL/u3CfwPg21u+zeOJxynYAnfvu3vW4iJBaeSYNxLv7RZVb9B2jzKFQoFsPkt7S3tlusp6cdkaoRwPqu6q3qDrruoN4bu3hXq0BtOoZYSraW1p5bDew9j69q0849pnMNw9zAdf8EGgOA/xly7+Et///feJp+L0d/aTSCd4YvIJvnr/Vw841iu+8Qo2rNzAi9a/iP2T+zn18FO54qQr2Di8sbLPU5NP8fvR3/P8o56PwTCdnaan48D+l+1jB84TXG6NKDO4YpBz1p3Dc498Lv/ym3/hXT95F+/6ybt4xupnVBLpH77+hzxz+JmsGyhOvTbff1D7kvs4ou8IYP4xv3PvnawdWFvZJ4q4iJVG4L3do+weZay1ZAvZZbdFgNub5ZTjQdVd1Rt03VW9IXx3qUS4rc2d7omrT2TbX25jw6oNB1x8d75zJ9PZaQ7tOZRbdt7CpddfSkdrByvaVvCli7/E/U/dzz1P3kN3Wzdfvf+rfOneLwHwg20/4B9+8Q8cP3Q8j8QemXXM1z7ztaxesZpPb/40xw8dz6YjNvGNB77BmUecyZlHnMmjY49iMEy9f4rjPnUcjycfZ/3K9fO6t7W0ccdVd3D4vxwOzK4mv+Ibr5i1b39nP0f2H8n5R5/Pv7z0X/i3O/+Nv775r/n7F/09r3vW63hs/DFW965mV3wXLzn6Jfx0x0+56LqLAPjMKz7D+pXrObTnUIwx3Pfkfbz+pNcf8B/fV+/7KscPHU8ineDZa55NX2ffrDG11lYS8rsev4vOtk4y+Qybjti04HuUzqWxWLrauvjxth+TSCd42bEvo6+zz2mshIn3do+ye5Rpa2urVISXi8seYeV4UHVX9QZdd1VvCN/dNOtTwaZNm+zmzZuX9D2JRIL+/v4GGdVPwRYwmHmrq7HpGMlMkl/t+BVHrT6K23ffzkd+8ZFKy8TFJ1xMJp/htl23kcoVG8C72roqj6s5/+jzufnKm3ly8kmms9McveroBb32Jvby1ORTXL/leno7euls7SRbyHLdg9exK76LqewULaYl1OWlezt66W7v5rTDTqO9tZ1VXasOqJa3tbSxuns1h/Qcwuru1dy681YATj3sVO598t5Z+25YuYHdE7u58NgLOXvt2cxkZ3jx0S/m14/9mo/9+mNMZiY59bBT2bzv6Vh691nv5t5997K6dzXPO/J5nHrYqeQKOfYm9nL+Mecz0DnAj7f9mFwhx2Rmkjef+mZi0zGGe4Yp2AKx6RhbR7eybmAd+5L72HTEJjpaO4DiDYsDnQMc2X9k5f0emRphZdfKygeAgi0s6T/sdC5NJp9h29g2NnRvINOWYef4Tg7pOYQj+o6gs61z1v65Qo7fPfE7zjzizGX/yTksovq7GYR63I0xd1trF/6k9gfGUq/ZiUSC9/7ivXz7oW8z8u7lLYl6/1P3c8pnT+HKk6/kvy79r2UdazEOtliOAqreoOuu6g31u9e6bkslwrlcTvZTTLV7Kpdib2Ivw93DDHQNADCRmuDH237MWWvP4sj+I7nnyXtoa2nj4dGH6WjtIG/znHvUuQx1D4XqZa1lbGaMj//m4/w+9ntesO4FnH/M+dz35H2MzYwx0DnA/z76vzw5+SQPjz7MGUecwXvOeg+/3PNLOts6ue7B61jdvZpXP+PVpPNpbt15K7GZGFtHttLe2s5Tk0+Rt3kGVwzy9jPfzifv+CS9Hb0c0XcEO+M7mUhNkLdPz75RrlA/NPIQrzjuFWQLWe554h6mslOVDw/zsW5gHWv61vCbvb9Z8hiUPwy0mBY6WjsO+BDS0drBmr41tLa0sm1sG1DsKT+k5xBaTAu/eew35G2eI/uPZKBzgK2jWzn3qHPp6eihr6OP44eOJ5lOsnV0K3sTe9k/tZ8zjjiDztZOvv/77x/g09HaMauf+zlrnsNA1wA3b7+ZZx3yLB7c/yAArz/p9RgM5x99PrGZGN3t3axoW8HO+E5Wda3iyckn2RHfwbOPeDY74zsp2AL5Qp6O1g5Wdq3ksN7DyOQztJgWTj/8dHo6eoin4ozNjNHZ2slA1wBtLW0cNXAUjyUeo72lnSP6juDRsUcrfwHJFrJ0t3fT3drNUM8QK9pX8Om7Ps1Lj3kpo9OjnH746exN7KWrrYuBzgFSuRQT6QmOGzwOgOnsNFPZKXKFHEf0HcGu+C627N/CuevPpbejF5j9waJ8DvX+uT2Tz/Drx37N+pXrK39Rqee64hPhxcnlcvzFjX/BDx/9Ifv+Zt/i37AAW/Zv4VmfeRZvPuXNfPmSLy/rWIvxh/L/jBKq3qDrruoN9bv/QSTC4+PjsquhqLov1zueitPV1kVnayfGGPKF/Kxlr7P5LPFUnGQmydaRrZy34TxWtK844DgFW+Dh0Ydpb23ntp23cezgsZy7/lz2TOwhX8izbmAdFstEaoKejh5ue/g2XvbMl7E3sZev3f81oLjE9s7xnSQzSU4+9GTiqThPJJ/gnifv4Zadt/CK415Bf2c/U9kp1vStwVrL+pXr+er9X+VZhzyLbCHLYNcgyUySB/Y/QDafJZPPMJmZ5JXHv5K9ib3EU3FOOfQUfrz9xxRs8Wah2EyMrrYu1vStIVvIsmdiD+0tT99Rf+zgsQyuGOSsI8/iV7t/xXPWPodjBo/hvqfu47oHr6Ovo494Kl7Zvx7aWtrIFXJ1f3+jaW9p58TVJ/LA/gcAGFoxxHDPMAbDo2OPMtw9TGtLK7HpGDO5GXraezj1sFNJ5VKs7FrJ4X2H89MdPyVfyGOxnHH4GYzNjDGZmWRfch8bVm1g/cr1/Pbx3866CfYlR7+EL5z/BY467Kgl+fpEeHHGx8d5MPEgeyb28IaT37Csn711ZCsbP72RPz71j/nixV9c1rEWQ/VaDbruqt6g667qDfW7/0EkwtW9pGqounvv5ZHOpZlITzC4YpC2lqc/wZYT6N6O3krbBdT2ttZy267bOGvtWXS2FlslYjMx7nvyPrrauujrLCbL3e3d9HX0kUgnGOoe4qiBo7j3yXs5cfWJzORm6O3opWALjM+Mk8wkeSL5BEPdQ9z1+F20mBbW9K/h0J5DyeQzPBJ7hLzN83jicVpMC48lHmNXfBdvO+NtxKZj5Ao5BroGSKQTlUr5dHaaXfFdZAtZcoUcxw0ex0mHnEQmn2Ffch9jM2N84Z4vcOXJV7J+5XqS6STd7d08nnycnfGdvOr4V3HC0Al88Z4vsi+5j8EVxQ8eh/ceTt7mWde/junsNDvjO4nNxHgi+QSdbZ2MTo9y5hFnctTKo7ht520YY+jv7CeTz5BMJzl28Fj2Jfexuns1Jx1yEltHt5LKpbj7ibv5/Ks+z1WnX7Wk99UnwosT5u/gI7FHOOHfT+Cq067i8xd9PpRj1iIq1456UHVX9QZdd1VvqN+91nVbqi4ei8VYvXp1szXqQtXdey+PzrZODmk75IDtHa0dDK4YPGB7LW9jDOdtOG/WttXdq3nx0S9e1KG8gEz1bCTd7d1A8aZQgJMPPfmA7ztzTfBFWUZHRwOPd5BE5lUnvCrwz4aFL4wLvfZI7BEG7YHvg2f5hPk76HLWiKhcO+pB1V3VG3TdVb0hfHepRFj1TQNdd+/tFu9dHwtVBxZ6rXp5ck+4hBkTLucRbnYsLwdVd1Vv0HVX9Ybw3aUW1BgZWd6dx81E1d17u8V7u0fZPcqEOa4up09TjgdVd1Vv0HVX9Ybw3QNdVYwxFxpjHjbGbDPGvHee1zuNMdeXXr/TGLM+VMsSw8PDi+8UUVTdvbdbvLd7lN2jTJjj6rI1QjkeVN1VvUHXXdUbwndf9KpijGkFrgVeBmwErjDGbJyz258A49baY4FPAP8UqmWJ0dHRRhzWCaru3tst3ts9yu5RJsxxLbdGVM840yiU40HVXdUbdN1VvSF89yAfr58NbLPW7rDWZoDrgIvn7HMx8JXS4+8ALzYNuB1xaCjcOXRdouruvd3ivd2j7B5lwhxXl60RyvGg6q7qDbruqt4QvnuQq8oa4LGq53tL2+bdx1qbAyaAA0yNMW8zxmw2xmzev38/qVSK6elppqamSKfTJBIJcrkc4+PjWGsrWX+5H2TXrl1YaxkfHyeXy5FIJEin00xNTTE9PU0qlSKZTJLNZonH4xQKBWKx2KxjlL+OjY2Rz+eZmJggk8kwOTnJzMwMMzMzTE5OkslkmJiYIJ/PMzY2Nu8xYrEYhUKBeDxONpslmUzWPKc9e/bMe06jo6ORPqd9+/Yt+X2KwjnF4/G63qdmn9O+fftCjz0X57Rnzx6nv09hntPu3buX/D55Ficej4d2LJetEWF6u0bVXdUbdN1VvSF890XnETbGXAZcaK29qvT8SuA51tp3VO3zYGmfvaXn20v71KxfH8wryynhvd3ivd3jV5YLRj0ry4UVE/FUnFX/tIp3n/Vurjn/mlCOWYuDLZajgKo36LqrekP4K8sF+Xj9OLC26vmRpW3z7mOMaQMGgNiSLRdherr2ErtRR9Xde7vFe7tH2T3KhDmuLlsjlONB1V3VG3TdVb0hfPcgV5W7gOOMMRuMMR3A64Ab5uxzA/Dm0uPLgFttA5as6+zsDPuQzlB1995u8d7uUXaPMmGOq8vWCOV4UHVX9QZdd1VvCN990atKqef3HcBNwFbgW9baLcaYq40xF5V2+yIwZIzZBvw1cMAUa2GQy+UacVgnqLp7b7d4b/cou9ciClNehjmuLhfUUI4HVXdVb9B1V/WG8N0DNVlYa28Ebpyz7UNVj1PAa0I1mwfVdbFB1917u8V7u0fZfT6qprw8n+LNzXcZY26w1j5UtVtlyktjzOsoTnl5ecgeoR2rXBEuf20kyvGg6q7qDbruqt4QvrvUynItLVK6s1B1995u8d7uUXavQSSmvAxzXFtMCwZDW0vjb+5RjgdVd1Vv0HVX9Ybw3RedNaJRGGNGgN1L/LbVgOos0Kru3tst3ts99bgfZa2N5NJMYc70Y4x5G/C20tMTgIeXoKIaE6reoOuu6g267qreUL/7vNftps2dUc9/IsaYzapTFqm6e2+3eG/3KLs3GmvtfwD/Uc/3qo6rqjfouqt6g667qjeE765bG/d4PB7PfERmykuPx+OJOj4R9ng8nj8sIjPlpcfj8UQdtWVF6voTXURQdffebvHe7lF2PwBrbc4YU57yshX4UnnKS2CztfYGilNefrU05eUYxWQ5bFTHVdUbdN1VvUHXXdUbQnZv2s1yHo/H4/F4PB5PM/GtER6Px+PxeDyegxKfCHs8Ho/H4/F4DkpkEuHFlgxtJsaYLxlj9pfm5ixvGzTG/MQY82jp66rSdmOM+bfSedxvjDm9id5rjTG3GWMeMsZsMca8U8HdGNNljPmtMea+kvf/KW3fUFoudltp+diO0vaGLye7RP9WY8w9xpgfiHnvMsY8YIy51xizubQt0rFScllpjPmOMeb3xpitxpjnKXirEuVrNfjrdZPc/TW7Od7+mh0AiUTYPL1k6MuAjcAVxpiNzbWaxZeBC+dsey9wi7X2OOCW0nMonsNxpX9vAz7jyHE+csDfWGs3As8F3l4a16i7p4HzrLWnAKcCFxpjnktxmdhPWGuPBcYpLiMLVcvJAp8o7ddM3glsrXqu4g3wImvtqVVzOEY9VgD+FfixtfZE4BSKY6/gLYfAtRr89boZ+Gt28/DX7MWw1kb+H/A84Kaq5+8D3tdsrzmO64EHq54/DBxeenw48HDp8eeAK+bbr9n/gP8BzldyB7qB3wHPobjSTNvcmKF49/zzSo/bSvuZJvkeWfolPg/4AWAUvEsOu4DVc7ZFOlYozo+7c+64Rd1b9Z/Ctbrk5a/XzfP212x37v6aHeCfREUYWAM8VvV8b2lblDnUWvtE6fGTwKGlx5E8l9KfcE4D7kTAvfSnqnuB/cBPgO1A3Fqbm8et4l16fQIYcir8NJ8E3gMUSs+H0PAGsMDNxpi7TXHpXYh+rGwARoD/LP1p8wvGmB6i762K6vhJxYPa9Rr8NbtJ+Gt2AFQSYWls8WNKZOepM8b0At8F/spam6h+Laru1tq8tfZUip/Wnw2c2FyjxTHGvBLYb629u9kudXKOtfZ0in+Kersx5gXVL0Y0VtqA04HPWGtPA6Z4+k9qQGS9PU0i6vGgeL0Gf81uEv6aHQCVRDjIkqFR4yljzOEApa/7S9sjdS7GmHaKF9WvW2u/V9os4Q5grY0Dt1H889RKU1wuFma7RWU52bOBi4wxu4DrKP6p7V+JvjcA1trHS1/3A9+n+J9Z1GNlL7DXWntn6fl3KF5ko+6tiur4ScSD+vUa/DXbJf6aHQyVRDjIkqFRo3oJ0zdT7Ocqb39T6U7H5wITVeV+pxhjDMUVprZaaz9e9VKk3Y0xw8aYlaXHKyj2yW2leHG9rLTbXO+mLydrrX2ftfZIa+16ijF8q7X2DUTcG8AY02OM6Ss/Bl4KPEjEY8Va+yTwmDHmhNKmFwMPEXFvYRSv1SAQD6rXa/DXbIfKFfw1e2k/VOIf8HLgEYp9RR9ots8ct28CTwBZip9m/oRiX9AtwKPAT4HB0r6G4l3V24EHgE1N9D6H4p8X7gfuLf17edTdgZOBe0reDwIfKm0/GvgtsA34NtBZ2t5Ver6t9PrREYiZFwI/UPEuOd5X+rel/DsY9VgpuZwKbC7Fy38DqxS8Vf9F+Vpd8vPXa/fu/prt3tdfswP+80ssezwej8fj8XgOSlRaIzwej8fj8Xg8nlDxibDH4/F4PB6P56DEJ8Iej8fj8Xg8noMSnwh7PB6Px+PxeA5KfCLs8Xg8Ho/H4zko8Ymw56DFGPNCY8wPmu3h8Xg8nsXx12xPI/CJsMfj8Xg8Ho/noMQnwp7IY4x5ozHmt8aYe40xnzPGtBpjJo0xnzDGbDHG3GKMGS7te6ox5g5jzP3GmO8bY1aVth9rjPmpMeY+Y8zvjDHHlA7fa4z5jjHm98aYr5dWb/J4PB5PnfhrtkcJnwh7Io0x5hnA5cDZ1tpTgTzwBqAH2GytfSbwc+DDpW/5L+BvrbUnU1xlprz968C11tpTgLMoriwFcBrwV8BGiivxnN3gU/J4PJ4/WPw126NGW7MFPJ5FeDFwBnBX6YP/CmA/UACuL+3zNeB7xpgBYKW19uel7V8Bvl1ab32Ntfb7ANbaFEDpeL+11u4tPb8XWA/8suFn5fF4PH+Y+Gu2RwqfCHuijgG+Yq1936yNxvx/c/ard63wdNXjPP53wuPxeJaDv2Z7pPCtEZ6ocwtwmTHmEABjzKAx5iiKsXtZaZ/XA7+01k4A48aY55e2Xwn83FqbBPYaYy4pHaPTGNPt8iQ8Ho/nIMFfsz1S+E9SnkhjrX3IGPNB4GZjTAuQBd4OTAHPLr22n2JPGsCbgc+WLpo7gLeWtl8JfM4Yc3XpGK9xeBoej8dzUOCv2R41jLX1/nXC42kexphJa21vsz08Ho/Hszj+mu2JKr41wuPxeDwej8dzUOIrwh6Px+PxeDyegxJfEfZ4PB6Px+PxHJT4RNjj8Xg8Ho/Hc1DiE2GPx+PxeDwez0GJT4Q9Ho/H4/F4PAclPhH2eDwej8fj8RyU/P+IKzHGlaJpcgAAAABJRU5ErkJggg==",
"text/plain": [
"