-
Notifications
You must be signed in to change notification settings - Fork 0
/
analog_gauge_reader.py
267 lines (222 loc) · 11.7 KB
/
analog_gauge_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
'''
Copyright (c) 2017 Intel Corporation.
Licensed under the MIT license. See LICENSE file in the project root for full license information.
'''
import cv2
import numpy as np
#import paho.mqtt.client as mqtt
import time
def avg_circles(circles, b):
avg_x=0
avg_y=0
avg_r=0
for i in range(b):
#optional - average for multiple circles (can happen when a gauge is at a slight angle)
avg_x = avg_x + circles[0][i][0]
avg_y = avg_y + circles[0][i][1]
avg_r = avg_r + circles[0][i][2]
avg_x = int(avg_x/(b))
avg_y = int(avg_y/(b))
avg_r = int(avg_r/(b))
return avg_x, avg_y, avg_r
def dist_2_pts(x1, y1, x2, y2):
#print np.sqrt((x2-x1)^2+(y2-y1)^2)
return np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
def calibrate_gauge(gauge_number, file_type):
'''
This function should be run using a test image in order to calibrate the range available to the dial as well as the
units. It works by first finding the center point and radius of the gauge. Then it draws lines at hard coded intervals
(separation) in degrees. It then prompts the user to enter position in degrees of the lowest possible value of the gauge,
as well as the starting value (which is probably zero in most cases but it won't assume that). It will then ask for the
position in degrees of the largest possible value of the gauge. Finally, it will ask for the units. This assumes that
the gauge is linear (as most probably are).
It will return the min value with angle in degrees (as a tuple), the max value with angle in degrees (as a tuple),
and the units (as a string).
'''
img = cv2.imread('gauge-%s.%s' %(gauge_number, file_type))
height, width = img.shape[:2]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #convert to gray
#gray = cv2.GaussianBlur(gray, (5, 5), 0)
# gray = cv2.medianBlur(gray, 5)
#for testing, output gray image
#cv2.imwrite('gauge-%s-bw.%s' %(gauge_number, file_type),gray)
#detect circles
#restricting the search from 35-48% of the possible radii gives fairly good results across different samples. Remember that
#these are pixel values which correspond to the possible radii search range.
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20, np.array([]), 100, 50, int(height*0.35), int(height*0.48))
# average found circles, found it to be more accurate than trying to tune HoughCircles parameters to get just the right one
a, b, c = circles.shape
x,y,r = avg_circles(circles, b)
#draw center and circle
cv2.circle(img, (x, y), r, (0, 0, 255), 3, cv2.LINE_AA) # draw circle
cv2.circle(img, (x, y), 2, (0, 255, 0), 3, cv2.LINE_AA) # draw center of circle
#for testing, output circles on image
#cv2.imwrite('gauge-%s-circles.%s' % (gauge_number, file_type), img)
#for calibration, plot lines from center going out at every 10 degrees and add marker
#for i from 0 to 36 (every 10 deg)
'''
goes through the motion of a circle and sets x and y values based on the set separation spacing. Also adds text to each
line. These lines and text labels serve as the reference point for the user to enter
NOTE: by default this approach sets 0/360 to be the +x axis (if the image has a cartesian grid in the middle), the addition
(i+9) in the text offset rotates the labels by 90 degrees so 0/360 is at the bottom (-y in cartesian). So this assumes the
gauge is aligned in the image, but it can be adjusted by changing the value of 9 to something else.
'''
separation = 10.0 #in degrees
interval = int(360 / separation)
p1 = np.zeros((interval,2)) #set empty arrays
p2 = np.zeros((interval,2))
p_text = np.zeros((interval,2))
for i in range(0,interval):
for j in range(0,2):
if (j%2==0):
p1[i][j] = x + 0.9 * r * np.cos(separation * i * 3.14 / 180) #point for lines
else:
p1[i][j] = y + 0.9 * r * np.sin(separation * i * 3.14 / 180)
text_offset_x = 10
text_offset_y = 5
for i in range(0, interval):
for j in range(0, 2):
if (j % 2 == 0):
p2[i][j] = x + r * np.cos(separation * i * 3.14 / 180)
p_text[i][j] = x - text_offset_x + 1.2 * r * np.cos((separation) * (i+9) * 3.14 / 180) #point for text labels, i+9 rotates the labels by 90 degrees
else:
p2[i][j] = y + r * np.sin(separation * i * 3.14 / 180)
p_text[i][j] = y + text_offset_y + 1.2* r * np.sin((separation) * (i+9) * 3.14 / 180) # point for text labels, i+9 rotates the labels by 90 degrees
#add the lines and labels to the image
for i in range(0,interval):
cv2.line(img, (int(p1[i][0]), int(p1[i][1])), (int(p2[i][0]), int(p2[i][1])),(0, 255, 0), 2)
cv2.putText(img, '%s' %(int(i*separation)), (int(p_text[i][0]), int(p_text[i][1])), cv2.FONT_HERSHEY_SIMPLEX, 0.3,(0,0,0),1,cv2.LINE_AA)
cv2.imwrite('gauge-%s-calibration.%s' % (gauge_number, file_type), img)
#get user input on min, max, values, and units
print 'gauge number: %s' %gauge_number
min_angle = raw_input('Min angle (lowest possible angle of dial) - in degrees: ') #the lowest possible angle
max_angle = raw_input('Max angle (highest possible angle) - in degrees: ') #highest possible angle
min_value = raw_input('Min value: ') #usually zero
max_value = raw_input('Max value: ') #maximum reading of the gauge
units = raw_input('Enter units: ')
#for testing purposes: hardcode and comment out raw_inputs above
# min_angle = 45
# max_angle = 320
# min_value = 0
# max_value = 200
# units = "PSI"
return min_angle, max_angle, min_value, max_value, units, x, y, r
def get_current_value(img, min_angle, max_angle, min_value, max_value, x, y, r, gauge_number, file_type):
#for testing purposes
#img = cv2.imread('gauge-%s.%s' % (gauge_number, file_type))
gray2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Set threshold and maxValue
thresh = 175
maxValue = 255
# for testing purposes, found cv2.THRESH_BINARY_INV to perform the best
# th, dst1 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_BINARY);
# th, dst2 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_BINARY_INV);
# th, dst3 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_TRUNC);
# th, dst4 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_TOZERO);
# th, dst5 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_TOZERO_INV);
# cv2.imwrite('gauge-%s-dst1.%s' % (gauge_number, file_type), dst1)
# cv2.imwrite('gauge-%s-dst2.%s' % (gauge_number, file_type), dst2)
# cv2.imwrite('gauge-%s-dst3.%s' % (gauge_number, file_type), dst3)
# cv2.imwrite('gauge-%s-dst4.%s' % (gauge_number, file_type), dst4)
# cv2.imwrite('gauge-%s-dst5.%s' % (gauge_number, file_type), dst5)
# apply thresholding which helps for finding lines
th, dst2 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_BINARY_INV);
# found Hough Lines generally performs better without Canny / blurring, though there were a couple exceptions where it would only work with Canny / blurring
#dst2 = cv2.medianBlur(dst2, 5)
#dst2 = cv2.Canny(dst2, 50, 150)
#dst2 = cv2.GaussianBlur(dst2, (5, 5), 0)
# for testing, show image after thresholding
cv2.imwrite('gauge-%s-tempdst2.%s' % (gauge_number, file_type), dst2)
# find lines
minLineLength = 10
maxLineGap = 0
lines = cv2.HoughLinesP(image=dst2, rho=3, theta=np.pi / 180, threshold=100,minLineLength=minLineLength, maxLineGap=0) # rho is set to 3 to detect more lines, easier to get more then filter them out later
#for testing purposes, show all found lines
# for i in range(0, len(lines)):
# for x1, y1, x2, y2 in lines[i]:
# cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# cv2.imwrite('gauge-%s-lines-test.%s' %(gauge_number, file_type), img)
# remove all lines outside a given radius
final_line_list = []
#print "radius: %s" %r
diff1LowerBound = 0.15 #diff1LowerBound and diff1UpperBound determine how close the line should be from the center
diff1UpperBound = 0.25
diff2LowerBound = 0.5 #diff2LowerBound and diff2UpperBound determine how close the other point of the line should be to the outside of the gauge
diff2UpperBound = 1.0
for i in range(0, len(lines)):
for x1, y1, x2, y2 in lines[i]:
diff1 = dist_2_pts(x, y, x1, y1) # x, y is center of circle
diff2 = dist_2_pts(x, y, x2, y2) # x, y is center of circle
#set diff1 to be the smaller (closest to the center) of the two), makes the math easier
if (diff1 > diff2):
temp = diff1
diff1 = diff2
diff2 = temp
# check if line is within an acceptable range
if (((diff1<diff1UpperBound*r) and (diff1>diff1LowerBound*r) and (diff2<diff2UpperBound*r)) and (diff2>diff2LowerBound*r)):
line_length = dist_2_pts(x1, y1, x2, y2)
# add to final list
final_line_list.append([x1, y1, x2, y2])
#testing only, show all lines after filtering
# for i in range(0,len(final_line_list)):
# x1 = final_line_list[i][0]
# y1 = final_line_list[i][1]
# x2 = final_line_list[i][2]
# y2 = final_line_list[i][3]
# cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# assumes the first line is the best one
x1 = final_line_list[0][0]
y1 = final_line_list[0][1]
x2 = final_line_list[0][2]
y2 = final_line_list[0][3]
cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
#for testing purposes, show the line overlayed on the original image
#cv2.imwrite('gauge-1-test.jpg', img)
cv2.imwrite('gauge-%s-lines-2.%s' % (gauge_number, file_type), img)
#find the farthest point from the center to be what is used to determine the angle
dist_pt_0 = dist_2_pts(x, y, x1, y1)
dist_pt_1 = dist_2_pts(x, y, x2, y2)
if (dist_pt_0 > dist_pt_1):
x_angle = x1 - x
y_angle = y - y1
else:
x_angle = x2 - x
y_angle = y - y2
# take the arc tan of y/x to find the angle
res = np.arctan(np.divide(float(y_angle), float(x_angle)))
#np.rad2deg(res) #coverts to degrees
# print x_angle
# print y_angle
# print res
# print np.rad2deg(res)
#these were determined by trial and error
res = np.rad2deg(res)
if x_angle > 0 and y_angle > 0: #in quadrant I
final_angle = 270 - res
if x_angle < 0 and y_angle > 0: #in quadrant II
final_angle = 90 - res
if x_angle < 0 and y_angle < 0: #in quadrant III
final_angle = 90 - res
if x_angle > 0 and y_angle < 0: #in quadrant IV
final_angle = 270 - res
#print final_angle
old_min = float(min_angle)
old_max = float(max_angle)
new_min = float(min_value)
new_max = float(max_value)
old_value = final_angle
old_range = (old_max - old_min)
new_range = (new_max - new_min)
new_value = (((old_value - old_min) * new_range) / old_range) + new_min
return new_value
def main():
gauge_number = 1
file_type='jpg'
# name the calibration image of your gauge 'gauge-#.jpg', for example 'gauge-5.jpg'. It's written this way so you can easily try multiple images
min_angle, max_angle, min_value, max_value, units, x, y, r = calibrate_gauge(gauge_number, file_type)
#feed an image (or frame) to get the current value, based on the calibration, by default uses same image as calibration
img = cv2.imread('gauge-%s.%s' % (gauge_number, file_type))
val = get_current_value(img, min_angle, max_angle, min_value, max_value, x, y, r, gauge_number, file_type)
print "Current reading: %s %s" %(val, units)
if __name__=='__main__':
main()