-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathglobal.R
561 lines (476 loc) · 21.7 KB
/
global.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
library(dplyr)
library(ggplot2)
library(purrr)
library(magrittr)
library(tidyr)
library(stringr)
library(forcats)
library(DT)
library(waiter)
library(qs)
library(bslib) # is also loaded in ui.R ?!
library(shinycssloaders)
library(markdown)
library(ggiraph)
library(mapproj)
library(patchwork) # smaller objects
library(shiny.i18n)
# activate these for the creation of maps
#library(gfonts)
#library(raster)
#options("sp_evolution_status"=2)
#library(sp)
#library(sf)
#library(cowplot) # creates too large objects! used for ggdraw
#library(jpeg)
#library(magick) # for LSA maps
#library(scales)
# on Ubuntu/engelmann, install packages with:
# sudo su - -c "R -e \"install.packages('party', repos='http://cran.rstudio.com/')\""
enableBookmarking(store = "url")
## Some settings
# 1. load paths externally
paths <- rio::import("paths/paths.csv")
SERVER_local <- filter(paths, name == "SERVER_local") %>%
dplyr::select(path) %>%
as.character()
SERVER <- filter(paths, name == "SERVER") %>%
dplyr::select(path) %>%
as.character()
## Font stuff
#get_all_fonts()
# setup_font(
# id = "open-sans",
# output_dir = "fonts",
# variants = c("regular", "italic", "700", "700italic"),
# prefer_local_source = FALSE)
#
# use_font("open-sans", "fonts/css/open-sans.css", selector = ".dummy-selector")
# setup_font(
# id = "roboto",
# output_dir = "fonts",
# variants = c("regular", "italic", "700", "700italic"),
# prefer_local_source = FALSE)
# setup_font(
# id = "domine",
# output_dir = "./Variatiounsatlas/fonts",
# variants = c("regular", "italic", "700", "700italic"),
# prefer_local_source = FALSE)
#use_font("domine", "fonts/css/domine.css")
#use_font("roboto", "fonts/css/roboto.css")
#validated_fonts(list(sans = "roboto", serif = "roboto"))
preloader <- list(html = tagList(spin_1(), "De Variatiounsatlas gëtt gelueden ..."), color = "#343a40")
## Prepare stuff
# Polygoner fir Kanonten a Gemengen
# Create new polygones for Gemengen
#library(rgdal) # R wrapper around GDAL/OGR
#library(ggplot2) # for general plotting
#library(ggmaps) # for fortifying shapefiles
# First read in the shapefile, using the path to the shapefile and the shapefile name minus the
# extension as arguments
#shapefile <- readOGR("/Users/peter.gilles/Downloads/gadm36_LUX_shp/gadm36_LUX_3.shp")
# Then modify polygons in QGIS, save
# Next the shapefile has to be converted to a dataframe for use in ggplot2
#shapefile_df <- fortify(shapefile, region = "NAME_3")
# Save as RDS
#saveRDS(shapefile_df, "communes_df.RDS")
# load prepared polygon data for cantons and communes
cantons_df <- readRDS("seed/cantons_df.RDS")
communes_df <- readRDS("seed/communes_df.RDS")
Gemengen_Statistiken <- qread("seed/Gemengen_Statistiken.qs")
# Weider Elementer fir d'Kaartéierung
# rivers <- readRDS("river.RDS")
# rivers <- rivers[["osm_lines"]] %>%
# filter(name %in% c("Alzette", "Sûre", "Sauer", "Sauer - Sûre", "Mosel", "Moselle"))
#bbox_lux_2500.sf <-readRDS("bbox_lux_2500.sf.rds")
#elevation_raster <- readRDS("elevation_raster.rds")
# OSM base map
#osm_map <- qread("osm_map.qs")
color_palette <- c('#56cc9d','#beaed4','#fdc086','#ffff99','#386cb0','#f0027f','#bf5b17','#666666')
# Internationalisation
i18n <- Translator$new(translation_json_path='translations/translation.json')
i18n$set_translation_language('lb')
# update Kaartesettings from Google Docs
# library(googlesheets4)
# gs4_deauth()
# variables <- range_read(ss = "1IDtvxHgccWg2JMu-dqJyqsCpwsurpYLOgm6rfE0mMGU", sheet = "kaartesettings", col_names=T, col_types = "c") %>%
# filter(active == "yes") %>%
# arrange(map_category, input_choice) %>%
# write_csv(file = "./Variatiounsatlas/kaartesettings.csv")
# load Kaartesettings from local csv
variables <- read.csv("seed/kaartesettings.csv") %>%
filter(active == "yes") %>%
arrange(map_category, input_choice, .locale = "de")
# Functions
make_choices <- function(category) {
choices <- variables %>%
#dplyr::filter(map_category == {{category}}) %>%
dplyr::select(variable, input_choice) %>%
arrange(tolower(input_choice))
choices <- set_names(choices$variable, choices$input_choice)
#choices
# selectInput(inputId = category, label = h3(category),
# choices = choices,
# selectize = FALSE,
# size = 25)
}
# make_choices <- function(category) {
# choices <- variables %>%
# dplyr::filter(map_category == {{category}}) %>%
# dplyr::select(variable, input_choice) %>%
# arrange(input_choice)
# choices <- set_names(choices$variable, choices$input_choice)
# #choices
# # selectInput(inputId = category, label = h3(category),
# # choices = choices,
# # selectize = FALSE,
# # size = 25)
# }
# Function frequencies of variants
plot_freq_variants <- function(data, variable, selection, caption = "") {
color <- color_palette[1:length(selection)]
bar_df <- data %>%
dplyr::select(variable = {{variable}}) %>% # Filter the desired variable
filter(variable %in% selection) %>% # Only include variants from the selection
drop_na() %>%
mutate(Varianten = "Varianten", # Dummy variable for stacking
variable = factor(variable, levels = selection))
# Simple bar chart
bar <- ggplot(data = bar_df %>%
count(Varianten, variable) %>%
mutate(total = sum(n),
label = paste0(round(n/total, 2)*100, "%\n", n)),
aes(x = Varianten, y = n, fill = variable, label = label)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = color, breaks = selection) +
geom_text(position = position_stack(vjust = .5), size = 5, alpha = 0.9, color = "antiquewhite") +
coord_flip() +
theme(axis.title.x = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
legend.position = "bottom",
legend.title = element_blank(),
legend.text = element_text(size = 13),
legend.box = "horizontal",
text = element_text(size = 13),
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.text.x = element_blank())
return(bar)
}
#############################
# Function Iwwerbléckskaart #
make_summary_plot <- function(dataset, lsa_map_number, selection, color_num, map_title, item_number ="", item_text = "", geo_type) {
print(geo_type)
color <- color_palette[1:color_num]
# get count of all observations
variant_count <- dataset %>% distinct(id, total)
variant_count <- sum(variant_count$total)
dataset <- dataset %>%
group_by(id) %>%
mutate(prozent = n/total) %>%
filter(n == max(n)) %>%
mutate(max_variant = variants)
p <- ggplot() +
# variant data
geom_polygon_interactive(data = dataset, aes(x = long, y = lat, fill=max_variant, group = id,
tooltip = paste0(i18n$t("Lokalitéit: "), id,
i18n$t("\nHeefegst Variant: "), max_variant,
i18n$t("\nRelativ Heefegkeet: "), round(freq, 2)*100,
i18n$t(" %\nParticipanten: "), n)),
# alpha per polygon steered by percentage, if not useful, set alpha back to 0.8
linewidth=0, alpha = dataset$prozent) +
# add Rivers
#geom_sf(data = rivers, color = "#46b4e7") +
# borders of cantons
geom_polygon(data = cantons_df, aes(x = long, y = lat, group = id),
linewidth= .1, colour = "#a9a9a9", fill = NA) +
coord_map() +
# coord_sf(xlim = c(5.715637, 6.54680),
# ylim = c(49.393100, 50.192726),
# expand = FALSE) +
scale_colour_identity() +
scale_fill_manual(values = color[1:color_num],
breaks = selection) +
labs(title = paste(i18n$t("Variabel: "), word(map_title, 2, sep="_")),
fill = paste0(i18n$t("Haaptvariant\npro "), word(geo_type, 1, sep = "_")),
x = "", y = "",
caption = paste0(variant_count, i18n$t(" Participanten | Klengst Polygoner: "), word(geo_type, 1, sep = "_"), i18n$t("\n© Uni Lëtzebuerg | generéiert "), date())
) +
#theme_void(base_family = "sans") +
theme_void() +
theme(plot.title = element_text(size=38, hjust = 0.5, face="bold"),
plot.caption = element_text(size=26),
legend.position = c(0.8, 0.9),
legend.text = element_text(size=34),
legend.title = element_text(size=35, face = "bold"))
# plot with or without LSA
# with LSA
if(lsa_map_number != "NO") {
# prepare LSA map into grid
# für Docker
#lsa <- readJPEG(source = paste0("atlas/Kaarten-LSA_small/", lsa_map_number, "_lux.jpg"))
lsa <- readJPEG(source = paste0("./Kaarten-LSA_small/", lsa_map_number, "_lux.jpg"))
lsa <- ggdraw() + draw_image(lsa) +
labs(caption =paste0(i18n$t("Vergläichskaart aus dem 'Luxemburgischer Sprachatlas', LSA (1963), Kaart "), lsa_map_number)) +
theme_void() +
theme(plot.caption = element_text(size=26))
plot_row <- wrap_plots(lsa, p, nrow = 1, ncol = 2)
plot_row <- girafe(code = print(plot_row),
width_svg = 27, height_svg = 18,
#fonts = list(sans = "roboto"),
options = list(
opts_hover(css = "fill:#FF3333;stroke:black;cursor:pointer;", reactive = TRUE),
opts_selection(
type = "multiple", css = "fill:#FF3333;stroke:black;")))
} else {
#without LSA map
plot_row <- girafe(code = print(p),
width_svg = 20, height_svg = 24,
#fonts = list(sans = "Sans"),
options = list(
opts_hover(css = "fill:#FF3333;stroke:black;cursor:pointer;", reactive = TRUE),
opts_selection(
type = "multiple", css = "fill:#FF3333;stroke:black;")))
}
# to save map as pdf and png
#ggsave(plot = plot_row, filename = paste0(map_title, ".png"), units = "cm", width = 22)
#ggsave(plot = p, filename = paste0(map_title, ".pdf"), units = "cm", width = 22)
#ggsave(plot = plot_row, filename = paste0(map_title, "_mat_LSA.pdf"), device="pdf", dpi=400, units = "cm", width = 28)
qsave(plot_row, file = paste0("./overview_maps/Iwwerbleckskaart_", map_title, ".qs"))
return(plot_row)
}
########################################
# Function Iwwerbléckskaarte per Alter #
make_summary_plot_age <- function(dataset, lsa_map_number, selection, color_num, map_title, item_number ="", item_text = "", geo_type) {
color <- color_palette[1:color_num]
# TODO remove '_' from selection
#selection <- str_replace(selection, "_", "")
# get count of all observations
variant_count1 <- dataset %>% distinct(id, Alter, total)
variant_count <- sum(variant_count1$total)
freq_alter <- variant_count1 %>%
group_by(Alter) %>%
summarise(freq_alter = sum(total))
# define a function to create the labels
my_labeller <- function(value) {
freq_alter2 <- unique(freq_alter$freq_alter[freq_alter$Alter == value])
label <- paste0(value, "\n(N = ", freq_alter2, ")")
return(label)
}
dataset <- dataset %>%
group_by(id, Alter) %>%
mutate(prozent = n/total) %>%
filter(n == max(n)) %>%
mutate(max_variant = variants)
# create maps
p <- ggplot() +
# variant data
geom_polygon(data = dataset, aes(x = long, y = lat, fill=max_variant, group = id),
# alpha per polygon steered by percentage, if not useful, set alpha back to 0.8
linewidth=0, alpha = dataset$prozent) +
# borders of cantons
geom_polygon(data = cantons_df, aes(x = long, y = lat, group = id),
linewidth= .1, colour = "#a9a9a9", fill = NA) +
coord_map() +
scale_colour_identity() +
scale_fill_manual(values = color[1:color_num],
breaks = selection) +
labs(title = paste("Variabel '", word(map_title, 2, sep="_"), "' no Alter"),
fill = paste0("Haaptvariant\npro ", word(geo_type, 1, sep = "_")),
x = "", y = "",
caption = paste0(variant_count, " Participanten | Klengst Polygoner: Kanton\n© Uni Lëtzebuerg | generéiert ", date())
) +
theme_void(base_family = "Roboto") +
# potential error in connection with randomForest for 'margin', hence ggplot2::margin
# see: https://github.com/tidyverse/ggplot2/issues/2150
theme(plot.title = element_text(size=18, hjust = 0.5, face="bold", margin = ggplot2::margin(0, 0, 20, 0)),
plot.caption = element_text(size=12),
legend.position = "bottom",
legend.text = element_text(size=12),
legend.title = element_text(size=12, face = "bold"),
strip.text = element_text(size = 13, face = "bold"), # set strip.text to bold and size 12
) +
facet_wrap(. ~ Alter, labeller = as_labeller(my_labeller), scales = "fixed"
)
# Save maps
#qsave(p, file = paste0("./overview_maps/Iwwerbleckskaarten_Alter_", map_title, ".qs"))
# return maps
return(p)
}
### Function Variantekaarten #
make_plot <- function(dataset, variable, color) {
# Get count of all observations
variant_count <- dataset %>%
distinct(id, n) %>%
summarize(sum(n))
# Create ggplot
plot <- ggplot() +
geom_polygon(data = dataset, aes(x = long, y = lat, fill = freq,
group = id), linewidth = 0, alpha = 1, colour = "lightgrey") +
geom_polygon(data = cantons_df, aes(x = long, y = lat, group = id),
linewidth = .1, colour = "#a9a9a9", fill = NA) +
coord_map() +
scale_fill_gradient(guide = guide_legend(), low = "white", high = color,
name = paste(variant_count, "Participanten"), na.value = "white", limits = 0:1, labels = scales::percent(0.25 * 0:4)) +
labs(title = stringr::str_replace({{variable}}, "_", " "), x = "", y = "") +
theme_void() +
theme(plot.title = element_text(size = 16, face = "bold", hjust = 0.5),
legend.position = "bottom",
legend.text = element_text(size = 11),
legend.title = element_text(size = 12),
plot.margin = unit(c(0.2, 0, 0.2, 0), "cm")) +
guides(fill = guide_colourbar(barwidth = 7, barheight = .7, ticks = FALSE, title.position = "bottom", title.hjust = 0.5))
return(plot)
}
# Function to plot Sozialdaten #
plot_social_categories <- function(data, social_category, variable, selection, caption = "") {
color <- color_palette[1:length(selection)]
bar_df <- data %>%
# Einschränkung auf gewünschte Kategorie und Variable
dplyr::select({{social_category}}, variable = {{variable}}) %>%
# Nur Varianten aus der Selection
filter(variable %in% selection) %>%
drop_na() %>%
# Prozente berechnen
group_by({{social_category}}, variable) %>%
count() %>%
group_by({{social_category}}) %>%
mutate(total = sum(n)) %>%
mutate(Prozent = n/total) %>%
dplyr::rename(count_variant = n) %>%
group_by({{social_category}}) %>%
mutate(total_alter = sum(count_variant)) %>%
mutate(Prozent = count_variant/total_alter) %>%
ungroup() %>%
mutate(total_variable = sum(count_variant)) %>%
mutate(Prozent_variable = count_variant/total_variable) %>%
dplyr::select(-total_alter, -total_variable) %>%
group_by({{social_category}}) %>%
mutate(Prozent_social_category = sum(Prozent_variable))
#bar_df$w <- cumsum(bar_df$total)
#bar_df$wm <- bar_df$w - bar_df$total
#bar_df$wt <- with(bar_df, wm + (w - wm)/2)
# # Groups: Alter [6]
# Alter variable count_variant total Prozent
# <chr> <chr> <int> <int> <dbl>
# 1 ≤ 24 lo[g]ie 40 224 0.179
# 2 ≤ 24 lo[ʒ]ie 184 224 0.821
# 3 25 bis 34 lo[g]ie 45 305 0.148
# 4 25 bis 34 lo[ʒ]ie 260 305 0.852
# 5 35 bis 44 lo[g]ie 11 179 0.0615
# 6 35 bis 44 lo[ʒ]ie 168 179 0.939
# 7 45 bis 54 lo[g]ie 20 183 0.109
# 8 45 bis 54 lo[ʒ]ie 163 183 0.891
# 9 55 bis 64 lo[g]ie 8 123 0.0650
# 10 55 bis 64 lo[ʒ]ie 115 123 0.935
# 11 65+ lo[g]ie 2 40 0.05
# 12 65+ lo[ʒ]ie 38 40 0.95
# # A tibble: 4 x 5
# # Groups: Geschlecht [2]
# Geschlecht variable count_variant total Prozent
# <chr> <chr> <int> <int> <dbl>
# 1 Männlech lo[g]ie 31 328 0.0945
# 2 Männlech lo[ʒ]ie 297 328 0.905
# 3 Weiblech lo[g]ie 95 726 0.131
# 4 Weiblech lo[ʒ]ie 631 726 0.869
xlabel <- as.character(ensym(social_category))
#print(xlabel)
# Stacked barplot with multiple groups
bar <- ggplot(data=bar_df, aes(x= {{social_category}}, y = Prozent, fill = variable, label = count_variant), alpha = 0.9) +
geom_col(position = position_stack()) +
# with proportional bar widths
# geom_col(position = position_stack(), aes(width = Prozent_social_category * 2)) +
#geom_rect(position = position_stack(), aes(xmin = wm, xmax = w,
# ymax = Prozent, fill = variable)) +
geom_text(position = position_stack(vjust = .5), size = 5, alpha = 0.9, color = "antiquewhite") +
labs(fill = word(variable, 2, sep="_"),
caption = caption) +
# to displace labels, when too crowded
#scale_x_discrete(guide = guide_axis(n.dodge = 2)) +
scale_y_continuous(labels = scales::percent_format()) +
scale_fill_manual(values = color[1:length(selection)], breaks = selection) +
theme_minimal() +
labs(x = i18n$t(xlabel)) +
theme(legend.text = element_text(size=14),
legend.position="bottom",
legend.title = element_blank(),
plot.caption = element_text(size = 11),
axis.title = element_text(size=15),
axis.text = element_text(size=14))
return(bar)
}
# Function for decision tree
plot_decision_tree <- function(data, variable, selection) {
cond_df <- data %>%
dplyr::filter(Mammesprooch != "Neen") %>%
dplyr::select(variable = {{variable}}, Alter, Geschlecht, Dialektgebiet, Däitsch = `Kompetenz am Däitschen`, Franséisch = `Kompetenz am Franséischen`, Ausbildung) %>%
dplyr::filter((variable) %in% selection) %>%
na.omit() %>%
# filter variants above a certain frequency level
group_by(variable) %>%
dplyr::filter(n()/nrow(data) >= 0.04) %>%
ungroup()
cond_df[sapply(cond_df, is.character)] <- lapply(cond_df[sapply(cond_df, is.character)], as.factor)
# age as ordered factor
ageorder <- c("≤ 24", "25 bis 34", "35 bis 44", "45 bis 54", "55 bis 64", "65+")
cond_df$Alter <- factor(cond_df$Alter,
ordered = is.ordered(ageorder))
set.seed(1234)
cond_tree <- party::ctree(formula = variable ~ Alter + Geschlecht + Dialektgebiet + Däitsch + Franséisch + Ausbildung,
data = cond_df,
control = party::ctree_control(testtype = "Univariate", minbucket = 20))
# plot tree
plot(cond_tree)
}
# Function for RF variable importance
plot_VariableImportance <- function(data, variable, selection) {
forest_df <- data %>%
filter(Mammesprooch != "Neen") %>%
dplyr::select(variable = {{variable}}, Alter, Geschlecht, Dialektgebiet, Däitsch = `Kompetenz am Däitschen`, Franséisch = `Kompetenz am Franséischen`, Ausbildung) %>%
dplyr::filter((variable) %in% selection) %>%
na.omit() %>%
# filter variants above a certain frequency level
group_by(variable) %>%
filter(n()/nrow(data) >= 0.04) %>%
ungroup()
forest_df[sapply(forest_df, is.character)] <- lapply(forest_df[sapply(forest_df, is.character)], as.factor)
# age as ordered factor
ageorder <- c("≤ 24", "25 bis 34", "35 bis 44", "45 bis 54", "55 bis 64", "65+")
forest_df$Alter <- factor(forest_df$Alter,
ordered = is.ordered(ageorder))
# # mutate Index in forest_df as ordered factor
# indexorder <- c("<= 0.4", "0.6", "0.8", "1")
# forest_df$Index <- factor(forest_df$Index,
# ordered = is.ordered(indexorder))
# Random forest model
rf <- randomForest::randomForest(variable ~ Alter + Geschlecht + Dialektgebiet + Däitsch + Franséisch + Ausbildung,
data=forest_df, importance=TRUE, ntree=2000, keep.forest=FALSE)
# plot Variable Importance
randomForest::varImpPlot(rf, main = "Variable Importance", type = 1) # type = 1: mean decrease in accuracy
# save
#qsave(plot, file = paste0(variable, "_VariableImportance.qs"))
return(plot)
}
# Function for data table
plot_datatable <- function(data, variable) {
datatable(data %>%
dplyr::select(Gemeng, Variant = as.name({{variable}}), recordingURL, Kanton, Dialektgebitt = Dialektgebiet) %>%
dplyr::filter(Variant != "FALSE") %>%
mutate(Lauschtert = paste0("<audio controls preload=\"none\" type=\"audio/wav\" src=\"", recordingURL, "\"> </audio>")) %>%
dplyr::select(-recordingURL) %>%
dplyr::select(Variant, Lauschtert, Dialektgebitt, Gemeng, Kanton),
escape = FALSE,
#height = 600,
extensions = 'Scroller',
filter = 'top', options = list(
deferRender = TRUE,
scrollY = 600,
scroller = TRUE,
autoWidth = TRUE
))
}