-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
executable file
·423 lines (314 loc) · 12.1 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#!/usr/bin/env python2
# SPDX-License-Identifier: BSD-2-Clause
# This file controls the parameters for the circuit generator
import sys
#==============================================================================
# Prelude
#==============================================================================
def quoted(s): return "'\"" + s + "\"'"
# Intialise parameter map
p = {}
#==============================================================================
# Default config
#==============================================================================
# The Altera device family being targetted
p["DeviceFamily"] = quoted("Stratix V")
# The number of hardware threads per core
p["LogThreadsPerCore"] = 4
# The number of 32-bit instructions that fit in a core's instruction memory
p["LogInstrsPerCore"] = 11
# Share instruction memory between two cores?
p["SharedInstrMem"] = True
# Log of number of multi-threaded cores sharing a DCache
p["LogCoresPerDCache"] = 2
# Log of number of caches per DRAM port
p["LogDCachesPerDRAM"] = 3
# Log of number of 32-bit words in a single memory transfer
p["LogWordsPerBeat"] = 3
# Log of number of beats in a cache line
p["LogBeatsPerLine"] = 0
# Log of number of sets per thread in set-associative data cache
p["DCacheLogSetsPerThread"] = 2
# Log of number of ways per set in set-associative data cache
p["DCacheLogNumWays"] = 4
# Number of DRAMs per FPGA board
p["LogDRAMsPerBoard"] = 1
# Max number of outstanding DRAM requests permitted
p["DRAMLogMaxInFlight"] = 5
# DRAM latency in cycles (simulation only)
p["DRAMLatency"] = 20
# Size of each DRAM
p["LogBeatsPerDRAM"] = 26
# Size of internal flit payload
p["LogWordsPerFlit"] = 2
# Max flits per message
p["LogMaxFlitsPerMsg"] = 2
# Space available in mailbox scratchpad
p["LogMsgsPerMailbox"] = 9
# Number of cores sharing a mailbox
p["LogCoresPerMailbox"] = 2
# Number of bits in mailbox mesh X coord
p["MailboxMeshXBits"] = 2
# Number of bits in mailbox mesh Y coord
p["MailboxMeshYBits"] = 2
# Length of mailbox mesh X dimension
p["MailboxMeshXLen"] = 2 ** p["MailboxMeshXBits"]
# Length of mailbox mesh Y dimension
p["MailboxMeshYLen"] = 2 ** p["MailboxMeshYBits"]
# Number of mailboxes per board
p["LogMailboxesPerBoard"] = p["MailboxMeshXBits"] + p["MailboxMeshYBits"]
# Size of multicast queues in mailbox
p["LogMsgPtrQueueSize"] = 6
# Size of multicast serialisation buffer
p["LogMulticastBufferSize"] = 9
# Maximum size of boot loader (in bytes)
p["MaxBootImageBytes"] = 576
# Size of transmit buffer in a reliable link
p["LogTransmitBufferSize"] = 10
# Size of receive buffer in a MAC
p["LogMacRecvBufferSize"] = 5
# Size of receive buffer in a reliable link
p["LogReliableLinkRecvBufferSize"] = 9
# Max number of 64-bit items to put in an ethernet packet
p["TransmitBound"] = 20
# Timeout in reliable link (for detecting dropped packets)
p["LinkTimeout"] = 1024
# Latency of 10G MAC in cycles (simulation only)
p["MacLatency"] = 100
# Number of bits in mesh X coord (board id)
p["MeshXBits"] = 3
p["MeshXBits1"] = p["MeshXBits"] + 1
# Number of bits in mesh Y coord (board id)
p["MeshYBits"] = 3
p["MeshYBits1"] = p["MeshYBits"] + 1
# Number of bits in mesh X coord within a box (DIP switches)
p["MeshXBitsWithinBox"] = 2
# Number of bits in mesh Y coord within a box (DIP switches)
p["MeshYBitsWithinBox"] = 2
# Mesh X length within a box
p["MeshXLenWithinBox"] = 3
# Mesh Y length within a box
p["MeshYLenWithinBox"] = 2
# Number of cores per FPU
p["LogCoresPerFPU"] = 2
# Number of inter-FPGA links on north edge
# Number of inter-FPGA links on south edge
p["LogNorthSouthLinks"] = 0
# Number of inter-FPGA links on east edge
# Number of inter-FPGA links on west edge
p["LogEastWestLinks"] = 0
# Latencies of arithmetic megafunctions
p["IntMultLatency"] = 3
p["FPMultLatency"] = 11
p["FPAddSubLatency"] = 14
p["FPDivLatency"] = 14
p["FPConvertLatency"] = 6
p["FPCompareLatency"] = 3
# SRAM parameters
p["SRAMAddrWidth"] = 20
p["LogBytesPerSRAMBeat"] = 3
p["SRAMBurstWidth"] = 3
p["SRAMLatency"] = 8
p["SRAMLogMaxInFlight"] = 5
p["SRAMStoreLatency"] = 2
# Programmable router parameters:
p["LogRoutingEntryLen"] = 5 # Number of beats in a routing table entry
p["ProgRouterMaxBurst"] = 4
p["FetcherLogIndQueueSize"] = 1
p["FetcherLogBeatBufferSize"] = 5
p["FetcherLogFlitBufferSize"] = 5
p["FetcherLogMsgsPerFlitBuffer"] = (
p["FetcherLogFlitBufferSize"] - p["LogMaxFlitsPerMsg"])
p["FetcherMsgsPerFlitBuffer"] = 2 ** p["FetcherLogMsgsPerFlitBuffer"]
# Enable performance counters
p["EnablePerfCount"] = True
# Box mesh
p["BoxMeshXLen"] = 2
p["BoxMeshYLen"] = 4
p["BoxMesh"] = ('{'
'{"byron", "coleridge"},'
'{"defoe", "eliot"},'
'{"fielding", "goethe"},'
'{"heaney", "ibsen"}'
'}')
# Enable custom accelerators (experimental feature)
p["UseCustomAccelerator"] = False
# Clock frequency (in MHz)
p["ClockFreq"] = 210
#==============================================================================
# Derived Parameters
#==============================================================================
# (These should not be modified.)
# The number of 32-bit instructions that fit in a core's instruction memory
p["InstrsPerCore"] = 2**p["LogInstrsPerCore"]
# Number of sets per thread in set-associative data cache
p["DCacheSetsPerThread"] = 2**p["DCacheLogSetsPerThread"]
# Number of ways per set in set-associative data cache
p["DCacheNumWays"] = 2**p["DCacheLogNumWays"]
# Log of number of 32-bit words per data cache line
p["LogWordsPerLine"] = p["LogWordsPerBeat"]+p["LogBeatsPerLine"]
# Log of number of bytes per data cache line
p["LogBytesPerLine"] = 2+p["LogWordsPerLine"]
# Number of 32-bit words per data cache line
p["WordsPerLine"] = 2**p["LogWordsPerLine"]
# Data cache line size in bits
p["BitsPerLine"] = p["WordsPerLine"] * 32
# Number of beats per cache line
p["BeatsPerLine"] = 2**p["LogBeatsPerLine"]
# Number of 32-bit words in a memory transfer
p["WordsPerBeat"] = 2**p["LogWordsPerBeat"]
# Number of bytes in a memory transfer
p["BytesPerBeat"] = 4 * p["WordsPerBeat"]
# Number of bytes in a DRAM
p["BytesPerDRAM"] = 2**p["LogBeatsPerDRAM"] * p["BytesPerBeat"]
# Log of number of bytes in a memory transfer
p["LogBytesPerBeat"] = p["LogWordsPerBeat"] + 2
# Data cache beat width in bits
p["BeatWidth"] = p["WordsPerBeat"] * 32
# Longest possible burst transfer is 2^BeatBurstWidth-1
p["BeatBurstWidth"] = 3
assert p["LogBeatsPerLine"] < p["BeatBurstWidth"]
# Cores per DCache
p["CoresPerDCache"] = 2**p["LogCoresPerDCache"]
# Caches per DRAM
p["DCachesPerDRAM"] = 2**p["LogDCachesPerDRAM"]
# Flits per message
p["MaxFlitsPerMsg"] = 2**p["LogMaxFlitsPerMsg"]
# Mailbox size
p["LogFlitsPerMailbox"] = p["LogMsgsPerMailbox"] + p["LogMaxFlitsPerMsg"]
p["LogWordsPerMailbox"] = p["LogFlitsPerMailbox"] + p["LogWordsPerFlit"]
p["LogBytesPerMailbox"] = p["LogWordsPerMailbox"] + 2
# Words per flit
p["WordsPerFlit"] = 2**p["LogWordsPerFlit"]
# Bytes per flit
p["LogBytesPerFlit"] = p["LogWordsPerFlit"] + 2
# Bits per flit
p["BitsPerFlit"] = p["WordsPerFlit"] * 32
# Words per message
p["LogWordsPerMsg"] = p["LogWordsPerFlit"] + p["LogMaxFlitsPerMsg"]
# Bytes per message
p["LogBytesPerMsg"] = p["LogWordsPerMsg"] + 2
# Number of cores sharing a mailbox
p["CoresPerMailbox"] = 2 ** p["LogCoresPerMailbox"]
# Number of threads sharing a mailbox
p["LogThreadsPerMailbox"] = p["LogCoresPerMailbox"]+p["LogThreadsPerCore"]
p["ThreadsPerMailbox"] = 2**p["LogThreadsPerMailbox"]
# Base of off-chip memory-mapped region in bytes
p["LogOffChipRAMBaseAddr"] = (1+p["LogWordsPerFlit"]+2+
p["LogMaxFlitsPerMsg"]+
p["LogMsgsPerMailbox"])
# Size of mailbox transmit buffer
p["LogTransmitBufferLen"] = (p["LogMaxFlitsPerMsg"]
if p["LogMaxFlitsPerMsg"] > 1 else 1)
# Number of mailboxes per board
p["MailboxesPerBoard"] = 2 ** p["LogMailboxesPerBoard"]
# Number of DRAMs per FPGA board
p["DRAMsPerBoard"] = 2 ** p["LogDRAMsPerBoard"]
# Size of each DRAM
p["LogLinesPerDRAM"] = p["LogBeatsPerDRAM"] - p["LogBeatsPerLine"]
p["LogBytesPerDRAM"] = p["LogBeatsPerDRAM"] + p["LogBytesPerBeat"]
# Number of threads per DRAM
p["LogThreadsPerDRAM"] = (p["LogThreadsPerCore"] +
p["LogCoresPerDCache"] +
p["LogDCachesPerDRAM"])
p["ThreadsPerDRAM"] = 2 ** p["LogThreadsPerDRAM"]
# Size of DRAM partition on each thread
p["LogBytesPerDRAMPartition"] = (
p["LogBeatsPerDRAM"]-1 + p["LogWordsPerBeat"]+2 - p["LogThreadsPerDRAM"])
# Number of threads per board
p["LogThreadsPerBoard"] = p["LogThreadsPerDRAM"] + p["LogDRAMsPerBoard"]
p["ThreadsPerBoard"] = 2 ** p["LogThreadsPerBoard"]
# Cores per board
p["LogCoresPerBoard"] = p["LogCoresPerMailbox"] + p["LogMailboxesPerBoard"]
p["LogCoresPerBoard1"] = p["LogCoresPerBoard"] + 1
p["CoresPerBoard"] = 2**p["LogCoresPerBoard"]
# Threads per core
p["ThreadsPerCore"] = 2**p["LogThreadsPerCore"]
# Max number of threads in cluster
p["MaxThreads"] = (2**p["MeshXBits"] *
2**p["MeshYBits"] *
p["ThreadsPerBoard"])
# Size of off-chip memory
# Twice the size of DRAM
# Top half and bottom half map to the same DRAM memory
# But the top half has the partition-interlaving translation applied
p["LogBeatsPerMem"] = p["LogBeatsPerDRAM"] + 1
p["LogBytesPerMem"] = p["LogBytesPerDRAM"] + 1
p["LogLinesPerMem"] = p["LogLinesPerDRAM"] + 1
# Cores per FPU
p["CoresPerFPU"] = 2 ** p["LogCoresPerFPU"]
# Threads per FPU
p["LogThreadsPerFPU"] = p["LogThreadsPerCore"] + p["LogCoresPerFPU"]
# FPUs per board
p["LogFPUsPerBoard"] = p["LogCoresPerBoard"] - p["LogCoresPerFPU"]
p["FPUsPerBoard"] = 2 ** p["LogFPUsPerBoard"]
# Max latency of any FPU operation
p["FPUOpMaxLatency"] = max(
[ p["IntMultLatency"]
, p["FPMultLatency"]
, p["FPAddSubLatency"]
, p["FPDivLatency"]
, p["FPConvertLatency"]
, p["FPCompareLatency"]
])
# Number of inter-FPGA links
p["NumNorthSouthLinks"] = 2 ** p["LogNorthSouthLinks"]
p["NumEastWestLinks"] = 2 ** p["LogEastWestLinks"]
# SRAM parameters
p["BytesPerSRAMBeat"] = 2 ** p["LogBytesPerSRAMBeat"]
p["WordsPerSRAMBeat"] = p["BytesPerSRAMBeat"] / 4
p["SRAMDataWidth"] = 32 * p["WordsPerSRAMBeat"]
p["SRAMsPerBoard"] = 2 * p["DRAMsPerBoard"]
p["LogThreadsPerSRAM"] = p["LogThreadsPerDRAM"] - 1
p["LogBeatsPerSRAM"] = (
(p["SRAMAddrWidth"] + p["LogBytesPerSRAMBeat"]) - p["LogBytesPerBeat"])
p["LogBytesPerSRAM"] = p["LogBeatsPerSRAM"] + p["LogBytesPerBeat"]
p["LogBytesPerSRAMPartition"] = p["LogBytesPerSRAM"] - p["LogThreadsPerSRAM"]
# DRAM base and length
p["DRAMBase"] = 3 * (2 ** p["LogBytesPerSRAM"])
p["DRAMGlobalsLength"] = 2 ** (p["LogBytesPerDRAM"] - 1) - p["DRAMBase"]
p["POLiteDRAMGlobalsLength"] = 2 ** 14
p["POLiteProgRouterBase"] = p["DRAMBase"] + p["POLiteDRAMGlobalsLength"]
p["POLiteProgRouterLength"] = (p["DRAMGlobalsLength"] -
p["POLiteDRAMGlobalsLength"])
# POLite globals
# Number of FPGA boards per box (including bridge board)
p["BoardsPerBox"] = p["MeshXLenWithinBox"] * p["MeshYLenWithinBox"] + 1
# Parameters for programmable routers
# (and the routing-record fetchers they contain)
p["FetchersPerProgRouter"] = 4 + p["MailboxMeshXLen"]
p["LogFetcherFlitBufferSize"] = 5
#==============================================================================
# Main
#==============================================================================
def to_cpp_string(convertee):
"""Returns a string of convertee appropriate for cpp output. Mostly just for
converting booleans."""
if convertee is True:
return "true"
elif convertee is False:
return "false"
else:
return str(convertee)
if len(sys.argv) > 1:
mode = sys.argv[1]
else:
print "Usage: config.py <defs|envs|cpp|vpp>"
sys.exit(-1)
# The BoxMesh parameter is only meant for cpp mode
if (mode != "cpp"): del p["BoxMesh"]
if mode == "defs":
for var in p:
if isinstance(p[var], bool):
if p[var]: print("-D " + var),
else:
print("-D " + var + "=" + str(p[var])),
elif mode == "envs":
for var in p:
print("export " + var + "=" + str(p[var]))
elif mode == "cpp":
for var in p:
print("#define Tinsel" + var + " " + to_cpp_string(p[var]))
elif mode == "vpp":
for var in p:
print("`define Tinsel" + var + " " + str(p[var]))