-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathSIMDynPoroElasticity.h
123 lines (100 loc) · 3.64 KB
/
SIMDynPoroElasticity.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
// $Id$
//==============================================================================
//!
//! \file SIMDynPoroElasticity.h
//!
//! \date Apr 23 2016
//!
//! \author Knut Morten Okstad / SINTEF
//!
//! \brief Dynamic simulation driver for poroelasticity problems.
//!
//==============================================================================
#ifndef _SIM_DYN_PORO_ELASTICITY_H_
#define _SIM_DYN_PORO_ELASTICITY_H_
#include "SIMPoroElasticity.h"
/*!
\brief Driver class for dynamic poroelasticity problems.
*/
template<class Dim, class DynSIM>
class SIMDynPoroElasticity : public SIMPoroElasticity<Dim>
{
public:
//! \brief Default constructor.
SIMDynPoroElasticity() : dSim(*this) {}
//! \brief Constructor for mixed problems.
explicit SIMDynPoroElasticity(const std::vector<unsigned char>& flds)
: SIMPoroElasticity<Dim>(flds), dSim(*this) {}
//! \brief Empty destructor.
virtual ~SIMDynPoroElasticity() {}
//! \brief Prints out problem-specific data to the log stream.
virtual void printProblem() const
{
static short int ncall = 0;
if (++ncall == 1) // Avoiding infinite recursive calls
dSim.printProblem();
else
this->SIMPoroElasticity<Dim>::printProblem();
--ncall;
}
//! \brief Initializes the problem.
virtual bool init(const TimeStep& tp, bool withRF)
{
if (!this->initSystem(Dim::opt.solver,1,1,0,withRF))
return false;
dSim.initPrm();
dSim.initSol(3);
bool ok = this->setMode(SIM::INIT) && this->getIntegrand()->init(tp.time);
this->setQuadratureRule(Dim::opt.nGauss[0],true);
return ok;
}
//! \brief Advances the time step one step forward.
virtual bool advanceStep(TimeStep& tp) { return dSim.advanceStep(tp,false); }
//! \brief Computes the solution for the current time step.
virtual bool solveStep(TimeStep& tp)
{
if (dSim.solveStep(tp) != SIM::CONVERGED)
return false;
if (this->getNoFields(2) > 0)
{
// Calculate and print the pressure norms in case of mixed problem.
// The solution norms involving displacement variables
// are printed by the dynamic solution driver.
size_t iMax = 0;
double pMax = 0.0;
double pNorm = this->solutionNorms(dSim.getSolution(),&pMax,&iMax,
this->getNoFields(2),'P');
IFEM::cout <<" Pressure L2-norm : "<< pNorm
<<"\n Max pressure : "<< pMax
<<" node "<< iMax << std::endl;
}
return this->postSolve(tp);
}
//! \brief Solves the linearized system of current iteration.
SIM::ConvStatus solveIteration(TimeStep& p) { return dSim.solveIteration(p); }
//! \brief Returns the maximum number of iterations.
int getMaxit() const { return dSim.getMaxit(); }
//! \brief Returns a const reference to current solution vector.
virtual const Vector& getSolution(int i) const { return dSim.getSolution(i); }
//! \brief Returns a const reference to the solution vectors.
virtual const Vectors& getSolutions() const { return dSim.getSolutions(); }
protected:
//! \brief Returns a reference to the solution vectors (for assignment).
virtual Vectors& theSolutions() { return dSim.theSolutions(); }
using SIMPoroElasticity<Dim>::parse;
//! \brief Parses a data section from an XML element.
virtual bool parse(const tinyxml2::XMLElement* elem)
{
bool result = true;
static short int ncall = 0;
if (++ncall == 1) // Avoiding infinite recursive calls
result = dSim.parse(elem);
else
result = this->SIMPoroElasticity<Dim>::parse(elem);
--ncall;
return result;
}
private:
DynSIM dSim; //!< Dynamic solution driver
};
#endif