-
Notifications
You must be signed in to change notification settings - Fork 480
/
Copy pathdataset_transform.py
112 lines (88 loc) · 5.38 KB
/
dataset_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import pandas as pd
import os
import base64
import json
from PIL import Image
from io import BytesIO
from sklearn.model_selection import train_test_split
'''
original_dataset原始数据的路径文件夹,需修改为实际的路径
'''
#训练和验证集文本数据的文件
data1 = pd.read_csv('original_dataset/data1/ImageWordData.csv')
#训练和验证集图像数据的目录
data1_images_folder='original_dataset/data1/ImageData'
# 先将文本及对应图像id划分划分训练集和验证集
train_data, val_data = train_test_split(data1, test_size=0.2, random_state=42)
# 创建函数来处理数据集,使文本关联到其对应图像id的图像
def process_train_valid(data, images_folder, img_file, txt_file):
with open(img_file, 'w') as f_img, open(txt_file, 'w') as f_txt:
for index, row in data.iterrows():
# 图片内容需要被编码为base64格式
img_path = os.path.join(images_folder, row['image_id'])
with open(img_path, 'rb') as f_img_file:
img = Image.open(f_img_file)
img_buffer = BytesIO()
img.save(img_buffer, format=img.format)
byte_data = img_buffer.getvalue()
base64_str = base64.b64encode(byte_data).decode("utf-8")
f_img.write(f"{row['image_id']}\t{base64_str}\n")
# 文本内容和图片id需要被写入jsonl文件
text_data = {"text_id": row["image_id"], "text": row["caption"], "image_ids": [row["image_id"]]}
f_txt.write(json.dumps(text_data) + '\n')
# 处理训练集和验证集
# datasets/DatasetName为在Chinese-CLIP项目目录下新建的存放转换后数据集的文件夹
process_train_valid(train_data, data1_images_folder, 'Chinese-CLIP/datasets/DatasetName/train_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/train_texts.jsonl')
process_train_valid(val_data, data1_images_folder, 'Chinese-CLIP/datasets/DatasetName/valid_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/valid_texts.jsonl')
# 制作从文本到图像(Text_to_Image)检索时的,测试集。data2为Text_to_Image测试数据文件夹名
image_data2 = pd.read_csv('original_dataset/data2/image_data.csv')
word_test2 = pd.read_csv('original_dataset/data2/word_test.csv')
# 原始图像测试集目录
data2_images_folder='original_dataset/data2/ImageData'
# 处理Text_to_Image测试集
def process_text_to_image(image_data, images_folder, word_test, img_file, txt_file):
with open(img_file, 'w') as f_img, open(txt_file, 'w') as f_txt:
for index, row in image_data.iterrows():
# 图片内容需要被编码为base64格式
img_path = os.path.join(images_folder, row['image_id'])
with open(img_path, 'rb') as f_img_file:
img = Image.open(f_img_file)
img_buffer = BytesIO()
img.save(img_buffer, format=img.format)
byte_data = img_buffer.getvalue()
base64_str = base64.b64encode(byte_data).decode("utf-8")
f_img.write(f"{row['image_id']}\t{base64_str}\n")
for index, row in word_test.iterrows():
# 文本内容和图片id需要被写入jsonl文件
text_data = {"text_id": row["text_id"], "text": row["caption"], "image_ids": []}
f_txt.write(json.dumps(text_data) + '\n')
# datasets/DatasetName为在Chinese-CLIP项目目录下新建的存放转换后数据集的文件夹
process_text_to_image(image_data2, data2_images_folder, word_test2, 'Chinese-CLIP/datasets/DatasetName/test2_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/test2_texts.jsonl')
# 制作从图像到文本(Image_to_Text)检索时的,测试集。data3为Image_to_Text测试数据文件夹名
image_test3 = pd.read_csv('original_dataset/data3/image_test.csv')
word_data3 = pd.read_csv('original_dataset/data3/word_data.csv')
# 原始图像测试集目录
data3_images_folder='original_dataset/data3/ImageData'
# 处理Image_to_Text测试集集
def process_image_to_text(image_data, images_folder, word_test, img_file, txt_file):
with open(img_file, 'w') as f_img, open(txt_file, 'w') as f_txt:
for index, row in image_data.iterrows():
# 图片内容需要被编码为base64格式
img_path = os.path.join(images_folder, row['image_id'])
with open(img_path, 'rb') as f_img_file:
img = Image.open(f_img_file)
img_buffer = BytesIO()
img.save(img_buffer, format=img.format)
byte_data = img_buffer.getvalue()
base64_str = base64.b64encode(byte_data).decode("utf-8")
f_img.write(f"{row['image_id']}\t{base64_str}\n")
for index, row in word_test.iterrows():
# 文本内容和图片id需要被写入jsonl文件
text_data = {"text_id": row["text_id"], "text": row["caption"], "image_ids": []}
f_txt.write(json.dumps(text_data) + '\n')
# datasets/DatasetName为在Chinese-CLIP项目目录下新建的存放转换后数据集的文件夹
process_image_to_text(image_test3, data3_images_folder, word_data3, 'Chinese-CLIP/datasets/DatasetName/test3_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/test3_texts.jsonl')
'''
则将tsv和jsonl文件一起序列化,转换为内存索引的LMDB数据库文件的命令如下:
python ./Chinese-CLIP/cn_clip/preprocess/build_lmdb_dataset.py --data_dir Chinese-CLIP/datasets/DatasetName --splits train,valid,test2,test3
'''