-
Notifications
You must be signed in to change notification settings - Fork 1k
/
conv3x_emitter.py
220 lines (197 loc) · 9.61 KB
/
conv3x_emitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#################################################################################################
#
# Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Utilities for emitting CUTLASS >= 3 convolution kernels
"""
import enum
import os.path
import shutil
import logging
from string import Template
try:
import builtins
if hasattr(builtins, "CUTLASS_IGNORE_PACKAGE") and CUTLASS_IGNORE_PACKAGE == True:
raise ImportError("Disabling attempt to import cutlass_library")
from cutlass_library.library import *
except ImportError:
from library import *
_LOGGER = logging.getLogger(__name__)
###################################################################################################
#
# Emits single instances of a CUTLASS device-wide operator
#
###################################################################################################
class EmitConv3xInstance:
def __init__(self):
_LOGGER.debug("*** EmitConv3xInstance::__init__")
# Define epilogue type first, so that the mainloop type
# can use it with StageCountAutoCarveout.
self.template = """
// CUTLASS >= 3 convolution ${conv_kind_name} kernel instance "${operation_name}"
using ${operation_name}_epilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
${arch},
${opcode_class_epi},
${tile_shape}, // tile shape
${cluster_shape}, // cluster shape
${epi_tile_mn},
${element_accumulator},
${element_compute},
${element_c}, ${layout_c}, 128 / cute::sizeof_bits_v<${element_c}>,
${element_d}, ${layout_d}, 128 / cute::sizeof_bits_v<${element_d}>,
${epilogue_schedule}
// , class FusionOpOrCallbacks = cutlass::epilogue::fusion::LinearCombination<ElementD,ElementCompute>
>::CollectiveOp;
using ${operation_name}_mainloop =
typename cutlass::conv::collective::CollectiveBuilder<
${arch},
${opcode_class_main},
${conv_kind}, // kFprop, kDgrad, or kWgrad
${element_a}, ${layout_a}, 128 / cute::sizeof_bits_v<${element_a}>,
${element_b}, ${layout_b}, 128 / cute::sizeof_bits_v<${element_b}>,
${element_accumulator},
${tile_shape}, // tile shape
${cluster_shape}, // cluster shape
${stages},
${kernel_schedule}
>::CollectiveOp;
// Unit tests call this "ConvKernel".
// Conv operator ${operation_name}
using ${operation_name}_base = cutlass::conv::kernel::ConvUniversal<
${operation_name}_mainloop,
${operation_name}_epilogue,
${tile_scheduler}
>;
"""
def arch_number_to_type(self, arch: int) -> str:
return f"cutlass::arch::Sm{arch}"
def tile_shape(self, operation) -> str:
# For all three kinds of convolutions, the tile shape's K mode
# differs from GEMM in that needs to be wrapped in a Shape.
# For Wgrad convolutions specifically,
# the N tile shape also needs to be wrapped in a Shape.
m_template = 'cute::_${tile_shape_m}'
if operation.conv_kind == ConvKind.Wgrad:
n_template = 'cute::Shape<cute::_${tile_shape_n}>'
else:
n_template = 'cute::_${tile_shape_n}'
k_template = 'cute::Shape<cute::_${tile_shape_k}>'
tile_shape_template = f'cute::Shape<{m_template}, {n_template}, {k_template}>'
values = {
'tile_shape_m': operation.tile_description.tile_shape[0],
'tile_shape_n': operation.tile_description.tile_shape[1],
'tile_shape_k': operation.tile_description.tile_shape[2]
}
return Template(tile_shape_template).substitute(values)
def cluster_shape(self, operation) -> str:
m_template = 'cute::_${cluster_shape_m}'
n_template = 'cute::_${cluster_shape_n}'
k_template = 'cute::_${cluster_shape_k}'
cluster_shape_template = f'cute::Shape<{m_template}, {n_template}, {k_template}>'
values = {
'cluster_shape_m': operation.tile_description.cluster_shape[0],
'cluster_shape_n': operation.tile_description.cluster_shape[1],
'cluster_shape_k': operation.tile_description.cluster_shape[2],
}
return Template(cluster_shape_template).substitute(values)
def stage_count(self, operation) -> str:
# stages == 0 tells builder to pick the number of stages automatically
namespace_prefix = 'cutlass::conv::collective::'
if operation.tile_description.stages > 0:
return f"{namespace_prefix}StageCount<{str(operation.tile_description.stages)}>"
else:
return f"{namespace_prefix}StageCountAutoCarveout<sizeof(typename {operation.procedural_name()}_epilogue::SharedStorage)>"
def emit(self, operation) -> str:
_LOGGER.debug("*** EmitConv3xInstance::emit")
_LOGGER.debug("*** operation: procedural_name()=" + operation.procedural_name())
# Identify the operation as CUTLASS 3 by its is_3x field
if (not hasattr(operation, 'is_3x')) or (not operation.is_3x):
raise RuntimeError("operation must be a CUTLASS 3 operation")
epi_tile_mn = "cutlass::epilogue::collective::EpilogueTileAuto"
opcode_class_main = OpcodeClassTag[operation.tile_description.math_instruction.opcode_class]
opcode_class_epi = opcode_class_main
tile_shape = operation.tile_description.tile_shape
warp_count = operation.tile_description.warp_count
epilogue_schedule = EpilogueScheduleTag[operation.epilogue_schedule]
# KernelScheduleTag and TileSchedulerTag both hard-code the
# namespace qualification of KernelScheduleAuto as
# "cutlass::gemm::collective::" (unless the tag is 'void').
#
# For TileSchedulerTag, this namespace is fine, since CUTLASS 3
# convolutions use the same tile schedulers (from the same
# cutlass::gemm::collective namespace) as GEMMs.
kernel_schedule = KernelScheduleTag[operation.kernel_schedule].replace('gemm::', 'conv::')
tile_scheduler = TileSchedulerTag[operation.tile_scheduler]
opcode_class = OpcodeClassTag[operation.tile_description.math_instruction.opcode_class]
values = {
'operation_name': operation.procedural_name(),
'conv_kind': ConvKindTag[operation.conv_kind],
'conv_kind_name': ConvKindNames[operation.conv_kind].capitalize(),
'element_a': DataTypeTag[operation.A.element],
'layout_a': LayoutTag[operation.A.layout],
'align_a': int(operation.A.alignment),
'element_b': DataTypeTag[operation.B.element],
'layout_b': LayoutTag[operation.B.layout],
'align_b': int(operation.B.alignment),
'element_c': DataTypeTag[operation.C.element],
'layout_c': LayoutTag[operation.C.layout],
'align_c': int(operation.C.alignment),
'element_d': DataTypeTag[operation.D.element],
'layout_d': LayoutTag[operation.D.layout],
'align_d': int(operation.D.alignment),
'element_accumulator': DataTypeTag[operation.accumulator_type()],
'opcode_class': opcode_class,
'arch': self.arch_number_to_type(operation.arch),
'tile_shape': self.tile_shape(operation),
'cluster_shape': self.cluster_shape(operation),
'opcode_class_epi': opcode_class_epi,
'opcode_class_main': opcode_class_main,
'epi_tile_mn': epi_tile_mn,
'stages': self.stage_count(operation),
'kernel_schedule': kernel_schedule,
'epilogue_schedule': epilogue_schedule,
'tile_scheduler': tile_scheduler,
'element_compute': DataTypeTag[operation.element_compute]
}
return Template(self.template).substitute(values)
class EmitConv3xIncludes:
def __init__(self):
_LOGGER.debug("*** EmitConv3xIncludes::__init__")
self.includes = ['conv_operation_3x.hpp',
'cutlass/conv/device/conv_universal_adapter.hpp',
'cutlass/conv/kernel/conv_universal.hpp',
'cutlass/conv/collective/collective_builder.hpp',
'cutlass/epilogue/collective/collective_builder.hpp']
def emit(self, operation) -> str:
_LOGGER.debug("*** EmitConv3xIncludes::emit")
return '\n'.join(f"#include \"{incl}\"" for incl in self.includes) + \
"\n\n///////////////////////////////////////////////////////////////////////////////////////////////////"