forked from RUBi-ZA/MD-TASK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprs.py
executable file
·271 lines (179 loc) · 8.87 KB
/
prs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python
#
# Perform PRS calculations given and MD trajectory and a final state
# co-ordinate file
#
# Script distributed under GNU GPL 3.0
#
# Author: David Penkler
# Date: 17-11-2016
import sys, argparse
import numpy
import mdtraj as md
from math import log10, floor, sqrt
from lib import sdrms
from lib.cli import CLI
from lib.utils import Logger
from lib.trajectory import load_trajectory
def round_sig(x, sig=2):
return round(x,sig-int(floor(log10(x)))-1)
def trajectory_to_array(traj, totalframes, totalres):
trajectory = numpy.zeros((totalframes, totalres*3))
for row, frame in enumerate(traj):
top = frame.topology
col = 0
for atom_index, atom in enumerate(top.atoms):
if atom.name == "CA":
trajectory[row,col:col+3] = frame.xyz[0,atom_index]*10
col += 3
return trajectory
def align_frame(reference_frame, alternative_frame, aln=False):
totalres = reference_frame.shape[0]
if aln:
return sdrms.superpose3D(alternative_frame.reshape(totalres, 3), reference_frame, refmask=mask, targetmask=mask)[0].reshape(1, totalres*3)[0]
else:
return sdrms.superpose3D(alternative_frame.reshape(totalres, 3), reference_frame)[0].reshape(1, totalres*3)[0]
def calc_rmsd(reference_frame, alternative_frame, aln=False):
if aln:
return sdrms.superpose3D(alternative_frame, reference_frame, refmask=mask, targetmask=mask)[1]
else:
return sdrms.superpose3D(alternative_frame, reference_frame)[1]
def main(args):
if not args.final:
log.error("a final co-ordinate file must be supplied via the --final argument\n")
sys.exit(1)
initial = md.load_frame(args.trajectory, 0, top=args.topology)
if not args.initial:
args.initial = "initial.xyz"
log.info("Generating initial co-ordinate file: %s\n" % args.initial)
initial[0].save(args.initial)
log.info("Loading trajectory...\n")
if args.num_frames:
traj, totalframes = load_trajectory(args.trajectory, args.topology, args.step, True)
totalframes = args.num_frames
else:
traj, totalframes = load_trajectory(args.trajectory, args.topology, args.step, False)
totalres = initial.n_residues
log.info('- Total number of frames = %d\n- Number of residues = %d\n' % (totalframes, totalres))
trajectory = trajectory_to_array(traj, totalframes, totalres)
log.info('- Final trajectory matrix size: %s\n' % str(trajectory.shape))
del traj
log.info("Aligning trajectory frames...\n")
aligned_mat = numpy.zeros((totalframes,3*totalres))
frame_0 = trajectory[0].reshape(totalres, 3)
for frame in range(0, totalframes):
aligned_mat[frame] = align_frame(frame_0, trajectory[frame], args.aln)
del trajectory
log.info("- Calculating average structure...\n")
average_structure_1 = numpy.mean(aligned_mat, axis=0).reshape(totalres, 3)
log.info("- Aligning to average structure...\n")
for i in range(0, 10):
for frame in range(0, totalframes):
aligned_mat[frame] = align_frame(average_structure_1, aligned_mat[frame], args.aln)
average_structure_2 = numpy.average(aligned_mat, axis=0).reshape(totalres, 3)
rmsd = calc_rmsd(average_structure_1, average_structure_2, args.aln)
log.info(' - %s Angstroms from previous structure\n' % str(rmsd))
average_structure_1 = average_structure_2
del average_structure_2
if rmsd <= 0.000001:
for frame in range(0, totalframes):
aligned_mat[frame] = align_frame(average_structure_1, aligned_mat[frame], args.aln)
break
log.info("Calculating difference between frame atoms and average atoms...\n")
meanstructure = average_structure_1.reshape(totalres*3)
del average_structure_1
log.info('- Calculating R_mat\n')
R_mat = numpy.zeros((totalframes, totalres*3))
for frame in range(0, totalframes):
R_mat[frame,:] = (aligned_mat[frame,:]) - meanstructure
log.info('- Transposing\n')
RT_mat = numpy.transpose(R_mat)
RT_mat = numpy.mat(RT_mat)
R_mat = numpy.mat(R_mat)
log.info('- Calculating corr_mat\n')
corr_mat = (RT_mat * R_mat)/ (totalframes-1)
numpy.savetxt("corr_mat.txt", corr_mat)
del aligned_mat
del meanstructure
del R_mat
del RT_mat
log.info('Reading initial and final PDB co-ordinates...\n')
initial = numpy.zeros((totalres, 3))
final = numpy.zeros((totalres, 3))
with open(args.initial, 'r') as initial_lines:
with open(args.final, 'r') as final_lines:
res_index = 0
for line_index, initial_line in enumerate(initial_lines):
final_line = final_lines.readline()
if line_index >= 2 and res_index < totalres:
initial_res = initial_line.strip().split()
if initial_res[0] == "CA":
final_res = final_line.strip().split()
initial[res_index,] = initial_res[1:]
final[res_index,] = final_res[1:]
res_index += 1
log.info('Calculating experimental difference between initial and final co-ordinates...\n')
if args.aln:
log.info("- Using NTD alignment restrictions\n")
final_alg = sdrms.superpose3D(final, initial, refmask=mask, targetmask=mask)[0]
else:
final_alg = sdrms.superpose3D(final, initial)[0]
diffE = (final_alg-initial).reshape(totalres*3, 1)
del final
del final_alg
log.info('Implementing perturbations sequentially...\n')
perturbations = int(args.perturbations)
diffP = numpy.zeros((totalres, totalres*3, perturbations))
initial_trans = initial.reshape(1, totalres*3)
for s in range(0, perturbations):
for i in range(0, totalres):
delF = numpy.zeros((totalres*3))
f = 2 * numpy.random.random((3, 1)) - 1
j = (i + 1) * 3
delF[j-3] = round_sig(abs(f[0,0]), 5)* -1 if f[0,0]< 0 else round_sig(abs(f[0,0]), 5)
delF[j-2] = round_sig(abs(f[1,0]), 5)* -1 if f[1,0]< 0 else round_sig(abs(f[1,0]), 5)
delF[j-1] = round_sig(abs(f[2,0]), 5)* -1 if f[2,0]< 0 else round_sig(abs(f[2,0]), 5)
diffP[i,:,s] = numpy.dot((delF), (corr_mat))
diffP[i,:,s] = diffP[i,:,s] + initial_trans[0]
if args.aln:
diffP[i,:,s] = ((sdrms.superpose3D(diffP[i,:,s].reshape(totalres, 3), initial, refmask=mask, targetmask=mask)[0].reshape(1, totalres*3))[0]) - initial_trans[0]
else:
diffP[i,:,s] = ((sdrms.superpose3D(diffP[i,:,s].reshape(totalres, 3), initial)[0].reshape(1, totalres*3))[0]) - initial_trans[0]
del delF
del initial_trans
del initial
del corr_mat
log.info("Calculating Pearson's correlations coefficient...\n")
DTarget = numpy.zeros(totalres)
DIFF = numpy.zeros((totalres, totalres, perturbations))
RHO = numpy.zeros((totalres, perturbations))
for i in range(0, totalres):
DTarget[i] = sqrt(diffE[3*(i+1)-3]**2 + diffE[3*(i+1)-2]**2 + diffE[3*(i+1)-1]**2)
for j in range(0, perturbations):
for i in range(0, totalres):
for k in range(0, totalres):
DIFF[k,i,j] = sqrt((diffP[i, 3*(k+1)-3, j]**2) + (diffP[i, 3*(k+1)-2, j]**2) + (diffP[i, 3*(k+1)-1, j]**2))
del diffP
for i in range(0, perturbations):
for j in range(0, totalres):
RHO[j,i] = numpy.corrcoef(numpy.transpose(DIFF[:,j,i]), DTarget)[0,1]
del DIFF
del DTarget
maxRHO = numpy.zeros(totalres)
for i in range(0, totalres):
maxRHO[i] = numpy.amax(abs(RHO[i,:]))
numpy.savetxt("%s.csv" % args.prefix, maxRHO, delimiter=",", header=args.prefix)
del maxRHO
log = Logger()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("trajectory", help="Trajectory file")
parser.add_argument("--topology", help="Topology PDB file (required if trajectory does not contain topology information)")
parser.add_argument("--step", help="Size of step when iterating through trajectory frames", default=1, type=int)
parser.add_argument("--initial", help="Initial state co-ordinate file (default: generated from first frame of trajectory)", default=None)
parser.add_argument("--final", help="Final state co-ordinate file (must be provided)")
parser.add_argument("--perturbations", help="Number of perturbations (default: 250)", type=int, default=250)
parser.add_argument("--num-frames", help="The number of frames in the trajectory (provides improved performance for large trajectories that cannot be loaded into memory)", type=int, default=None)
parser.add_argument("--aln", help="Restrict N-Terminal alignment", action="store_true")
parser.add_argument("--prefix", help="Prefix for CSV output file (default: result)", default="result")
CLI(parser, main, log)