-
Notifications
You must be signed in to change notification settings - Fork 1
/
release.mod
121 lines (84 loc) · 2.77 KB
/
release.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
TITLE transmitter release
COMMENT
-----------------------------------------------------------------------------
Simple (minimal?) model of transmitter release
- single compartment, need calcium influx and efflux
- Ca++ binds to a "fusion factor" protein F leading to an activated form FA.
Assuming a cooperativity factor of 4 (see Augustine & charlton,
J Physiol. 381: 619-640, 1986), one obtains:
F + 4 Cai <-> FA (kb,ku)
- FA binds to presynaptic vesicles and activates them according to:
FA + V <-> VA (k1,k2)
VA represents the "activated vesicle" which is able to bind to the
membrane and release transmitter. Presynaptic vesicles (V) are
considered in excess.
- VA releases nt transmitter molecules in the synaptic cleft
VA -> nt T (k3)
This reaction is the slowest and a constant number of transmitter per
vesicule is considered (nt).
- Finally, T is hydrolyzed according to a first-order reaction
T -> ... (kh)
References:
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Synthesis of models for
excitable membranes, synaptic transmission and neuromodulation using a
common kinetic formalism, Journal of Computational Neuroscience 1:
195-230, 1994.
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of
synaptic transmission. In: Methods in Neuronal Modeling (2nd edition;
edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp 1-25.
For a more realistic model, see Yamada, WM & Zucker, RS. Time course
of transmitter release calculated from simulations of a calcium
diffusion model. Biophys. J. 61: 671-5682, 1992.
http://www.cnl.salk.edu/~alain
http://cns.fmed.ulaval.ca
Written by A. Destexhe, Salk Institute, December 1993; modified 1996
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX rel
USEION ca READ cai WRITE cai
RANGE T,FA,CA,Fmax,Ves,b,u,k1,k2,k3,nt,kh
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(mM) = (milli/liter)
}
PARAMETER {
Ves = 0.1 (mM) : conc of vesicles
Fmax = 0.001 (mM) : conc of fusion factor F
b = 1e16 (/mM4-ms) : ca binding to F
u = 0.1 (/ms) : ca unbinding
k1 = 1000 (/mM-ms) : F binding to vesicle
k2 = 0.1 (/ms) : F unbinding to vesicle
k3 = 4 (/ms) : exocytosis of T
nt = 10000 : nb of molec of T per vesicle
kh = 10 (/ms) : cst for hydolysis of T
}
ASSIGNED {
}
STATE {
FA (mM)
VA (mM)
T (mM)
cai (mM)
}
INITIAL {
FA = 0
VA = 0
T = 0
cai = 1e-8
}
BREAKPOINT {
SOLVE state METHOD derivimplicit
}
LOCAL bfc , kfv
DERIVATIVE state {
bfc = b * (Fmax-FA-VA) * cai^4
kfv = k1 * FA * Ves
cai' = - bfc + 4 * u * FA
FA' = bfc - u * FA - kfv + k2 * VA
VA' = kfv - (k2+k3) * VA
T' = nt * k3 * VA - kh * T
}