-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmadexp_brian_impl.py
80 lines (63 loc) · 2.74 KB
/
madexp_brian_impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from brian2 import *
import matplotlib.pyplot as plt
defaultclock.dt = 0.1*ms
C_m = 130.*pF # Membrane capacitance
g_L = 10.*nS # Leak conductance
E_0 = -55.*mV # Resting potential
V_th = -53.*mV # Spike generation threshold
Delta_T = 2.*mV # Slope factor
a = 4.*nS # subthreshold adaptation
tau_w = 120.*ms # timescale of the adaptation current
b = 60.*pA # spike-triggered adaptation
V_reset = -49.*mV # reset potential
I = 0.*pA # Constant input current
Vcut = V_th + 5*Delta_T # practical threshold condition
E_u = -50.*mV # upper potential
alpha = 1. # energetic health
E_d = -35.*mV # energy depletion potential
E_f = -45.*mV # energy inflexion potential
epsilon_0 = 0.5 # standard resting energy level
epsilon_c = 0.15 # energy threshold for spike generation
delta = 0.02 # energy consumption per spike
gamma = 200.*pA # normalization of adaptation energy
tau_e = 500.*ms # time constant for energy production
I_KATP = 1.*pA # peak ATP-gated potassium current
N = 1
eqs = """
E_L = E_0 + (E_u - E_0)*(1-epsilon/epsilon_0) : volt
dV_m/dt = (g_L*(E_L-V_m) + g_L*Delta_T*(epsilon - epsilon_c)*exp((V_m-V_th)/Delta_T)/epsilon_0 + I - w) / C_m : volt
dw/dt = (a*(V_m-E_L) - w + I_KATP*epsilon_c/(epsilon_c + 2*epsilon)) / tau_w : amp
depsilon/dt = ((1-epsilon/(alpha*epsilon_0))**3 - (V_m-E_f)/(E_d-E_f) - w/gamma) / tau_e : 1
"""
neuron = NeuronGroup(N, model=eqs, threshold='V_m > Vcut and epsilon > epsilon_c', # the epsilon check is necessary in case Delta_T == 0
reset="V_m = V_reset; w += b; epsilon -= delta",
method='rk4')
neuron.V_m = -60*mV
neuron.w = a * (neuron.V_m - E_0)
neuron.epsilon = 1.2
init_time = 3*second
run(init_time, report='text') # we let the neuron relax to equilibrium
# record the state variables and run the simulation
spikes = SpikeMonitor(neuron)
states = StateMonitor(neuron, ("V_m", "w", "epsilon"), record=True,
when='start')
for I in np.linspace(0, 250, 10)*pA:
run(1 * second, report='text')
I = 0*pA
run(10 * second, report='text')
# Get the values of V_reset and w for each spike
V = states.V_m[0] / mV
w = states.w[0] / pA
e = states.epsilon[0]
tt = states.t / ms
pos = np.digitize(spikes.t / ms, tt) - 1
V[pos] = -10.
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
ax1.plot(tt, V)
ax1.set_ylabel('V (mV)')
ax2.plot(tt, w)
ax2.set_ylabel('w (pA)')
ax3.plot(tt, e)
ax3.set_ylabel('epsilon')
ax3.set_xlabel('Time (ms)')
plt.show()