-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmadexp.mod
153 lines (135 loc) · 4.17 KB
/
madexp.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
: Energy-based leaky integrate-and-fire neuron.
:
: Description:
: The dynamics are given by:
: C_m dV_m/dt = g_L*(V-E_L) - w + I_e + I_syn_ex + I_syn_in
: tau_w dw/dt = a(V-E_L) - epsilon/epsilon_0 w + I_KATP*epsilon_0/(epsilon_0 + epsilon)
: tau_e depsilon/dt = (1-epsilon/(alpha*epsilon_0))**3 - (V-E_f)/(E_d-E_f) - gamma*w
:
: E_L = E_0 + (E_u - E_0)(1-epsilon/epsilon_0)
:
: if V_m >= V_th and epsilon > epsilon_c:
: V_m is set to V_reset
:
: On each spike arrival, the membrane potential feels an alpha-shaped current
: of the form:
: I_syn = I_0 * t * exp(-t/tau_syn) / tau_syn.
:
: FirstVersion: 2019
: Author: Tanguy Fardet
NEURON {
POINT_PROCESS mAdExp
RANGE V_reset, t_ref, V_spike, V_th, V_peak, spikewidth, C_m
RANGE w, winit, epsilon
RANGE a, b, tau_w, g_L, Delta_T, E_0, E_u, E_d, E_f
RANGE gamma, tau_e, epsilon_0, epsilon_c, delta, I_KATP, alpha
NONSPECIFIC_CURRENT i, I_e
}
UNITS {
(mV) = (millivolt)
(pA) = (picoamp)
(nS) = (nanosiemens)
}
PARAMETER {
V_th = -50 (mV) : spike threshold for exponential calculation purposes
V_reset = -60 (mV) : reset potential after a spike
V_spike = -43 (mV) : spike detection threshold
V_peak = 0 (mV) : peak of spike
t_ref = 1 (ms) : refractory period
gon = 1e9 (nS) : refractory clamp conductance
spikewidth = 1e-12 (ms) : must be less than t_ref
E_0 = -55. (mV)
E_u = -50. (mV)
E_d = -35. (mV)
E_f = -45. (mV)
epsilon_0 = 0.5
epsilon_c = 0.15
alpha = 1. <0, 1e9>
delta = 0.02
tau_e = 500. (ms) <0, 1e9>
gamma = 200. (pA) <0, 1e9>
I_KATP = 1 (pA)
a = 0. (nS) : level of adaptation
b = 80.5 (pA) : increment of adaptation
tau_w = 144 (ms) : time constant of adaptation
g_L = 30. (nS) : leak conductance (must be equal to g_pas(S/cm2)*membrane area(um2)*1e-2)
Delta_T = 2 (mV) : steepness of exponential approach to threshold
I_e = 0 (pA)
winit = 0 (pA)
}
ASSIGNED {
i (pA)
irefrac (pA)
iexp (pA)
grefrac (nS)
refractory
spike_threshold (mV)
}
STATE {
w (pA)
epsilon
}
INITIAL {
grefrac = 0
net_send(0,4)
w = winit
epsilon = alpha*epsilon_0
if (Delta_T == 0) {
spike_threshold = V_th
} else {
spike_threshold = V_spike
}
}
FUNCTION E_L (epsilon) (mV) {
E_L = E_0 + (E_u - E_0)*(1 - epsilon/epsilon_0)
}
BREAKPOINT {
SOLVE states METHOD derivimplicit : cnexp
irefrac = grefrac*(v-V_reset)
iexp = exp_current(v, epsilon)
i = ( g_L*(v - E_L(epsilon)) + iexp + w + irefrac - I_e)
}
DERIVATIVE states { : solve eq for adaptation variable
w' = (a*(v-E_L(epsilon)) - w + I_KATP*epsilon_c/(2*epsilon + epsilon_c)) / tau_w
epsilon' = ((1-epsilon/(alpha*epsilon_0))*(1-epsilon/(alpha*epsilon_0))*(1-epsilon/(alpha*epsilon_0)) - (v-E_f)/(E_d-E_f) - w/gamma) / tau_e
}
FUNCTION exp_current(v, epsilon) { : handle the case where Delta_T is 0 or very small
if (Delta_T == 0) {
exp_current = 0
} else if ((v - V_th)/Delta_T > 100) {
exp_current = -g_L*Delta_T*(epsilon-epsilon_c)*exp(99)/epsilon_0
} else {
exp_current = -g_L*Delta_T*(epsilon-epsilon_c)*exp((v-V_th)/Delta_T)/epsilon_0
}
}
FUNCTION threshcrossing (v (mV), epsilon) {
if ((v > V_spike) && (epsilon > epsilon_c)) {
: the epsilon check is necessary in case Delta_T == 0
threshcrossing = 1
}
else {
threshcrossing = -1
}
}
NET_RECEIVE (weight) {
if (flag == 1) { : beginning of spike
v = V_peak
w = w + b
epsilon = epsilon - delta
net_send(spikewidth, 2)
net_event(t)
} else if (flag == 2) { : end of spike, beginning of refractory period
v = V_reset
grefrac = gon
if (t_ref > spikewidth) {
net_send(t_ref-spikewidth, 3)
} else { : also the end of the refractory period
grefrac = 0
}
} else if (flag == 3) { : end of refractory period
v = V_reset
grefrac = 0
} else if (flag == 4) { : watch membrane potential
WATCH ( threshcrossing(v, epsilon) > 0 ) 1
}
}