-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFS-RS.py
513 lines (336 loc) · 15.1 KB
/
FS-RS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
#========================================================================
from AuxiliarFunctions import *
#========================================================================
from brian2 import *
import numpy as np
from scipy import integrate
import matplotlib
import matplotlib.pyplot as plt
import random
"""
This code describes the implementation of the PING networkt developed in the following paper:
!!!!!!
If you use this code, please cite:
"""
#========================================================================
start_scope() # This is just to make sure that any Brian objects created before the function is called aren't included in the next run of the simulation.
t_simulation = 6*second
defaultclock.dt = 0.1*ms
################################################################################
#Network Structure
################################################################################
N=25000
NE=int(N*4./5.); NI=int(N/5.)
#-----------------------------
prob_Pee=0.02 #(RS->RS)
prob_Pei=0.02 #(RS->FS)
prob_Pii=0.02 #(FS->FS)
prob_Pie=0.02 #(FS->RS)
prob_p=0.02 #External
################################################################################
#Reescaling Synaptic Weights based on Synaptic Decay
################################################################################
tau_i= 7.5*ms; tau_e= 1*ms
#----------------------------
#Reference synaptic weights
#----------------------------
Ge_extE_r=0.8*nS #(External in RS)
Ge_extI_r=0.8*nS #(External in FS1a)
Gee_r=1*nS #(RS->RS)
Gei_r=1*nS #(RS->FS1a)
Gii_r=5*nS #(FS1a->FS1a)
Gie_r=5*nS #(FS1a->RS)
#-----------------------------
#This allows to study the effect of the time scales alone
tauI_r= 5.*ms; tauE_r= 5.*ms #References time scales
Ge_extE=Ge_extE_r*tauE_r/tau_e
Ge_extI=Ge_extI_r*tauE_r/tau_e
Gee=Gee_r*tauE_r/tau_e
Gei=Gei_r*tauE_r/tau_e
Gii=Gii_r*tauI_r/tau_i
Gie=Gie_r*tauI_r/tau_i
################################################################################
#Neuron Model
################################################################################
#######Parameters#######
V_reset=-65.*mvolt; VT=-50.*mV
Ei= -80.*mvolt; Ee=0.*mvolt; t_ref=5*ms
C = 150 * pF; gL = 10 * nS
tauw=500*ms
Delay= 1.5*ms
#######Eleaky Heterogenities#######
Eleaky_RS=np.full(NE,-65)*mV
Eleaky_FS=np.full(NI,-65)*mV
########Equation#########
eqs= """
dv/dt = (gL*(EL - v) + gL*DeltaT*exp((v - VT)/DeltaT) + ge*(Ee-v)+ gi*(Ei-v) - w + I)/C : volt (unless refractory)
IsynE=ge*(Ee-v) : amp
IsynI=gi*(Ei-v) : amp
dge/dt = -ge/tau_e : siemens
dgi/dt = -gi/tau_i : siemens
dw/dt = (a*(v - EL) - w)/tauw : amp
taum= C/gL : second
I : amp
a : siemens
b : amp
DeltaT: volt
Vcut: volt
EL : volt
"""
###### Initialize neuron group#############
#FS
neuronsI = NeuronGroup(NI, eqs, threshold='v>Vcut',reset="v=V_reset; w+=b", refractory=t_ref)
neuronsI.a=0*nS; neuronsI.b=0.*pA; neuronsI.DeltaT = 0.5*mV; neuronsI.Vcut = VT + 5*neuronsI.DeltaT
neuronsI.EL=Eleaky_FS
#RS
neuronsE = NeuronGroup(NE, eqs, threshold='v>Vcut',reset="v=V_reset; w+=b", refractory=t_ref)
neuronsE.a=4*nS; neuronsE.b=20.*pA; neuronsE.DeltaT = 2.*mV; neuronsE.Vcut = VT + 5 *neuronsE.DeltaT
neuronsE.EL=Eleaky_RS
############################################################################################
#Initial conditions
############################################################################################
#Random Membrane Potentials
neuronsI.v=np.random.uniform(low=-65,high=-50,size=NI)*mV
neuronsE.v=np.random.uniform(low=-65,high=-50,size=NE)*mV
#Conductances
neuronsI.gi = 0.*nS; neuronsI.ge = 0.*nS
neuronsE.gi = 0.*nS; neuronsE.ge = 0.*nS
#Adaptation Current
neuronsI.w = 0.*amp; neuronsE.w = 0.*amp
############################################################################################
#External Stimulus
############################################################################################
#==========================================================================
#Correlated and Time Varying External Stimulus
#==========================================================================
f_min=0 ; f_max=1.
MinPlatoTime=150*(10**-3) ; MaxPlatoTime=600*(10**-3)
TransitionTime=50*(10**-3) ; BaseTime=1 #all in seconds (no units)
T_simulation=t_simulation/second ; DT=defaultclock.dt/second
#-----
ExtFreqPattern_time, ExtFreqPattern=IrregularFluctuationPattern(f_min,f_max,TransitionTime,MinPlatoTime,MaxPlatoTime,BaseTime,DT,T_simulation)
rate_changes= TimedArray(ExtFreqPattern*Hz, dt=defaultclock.dt)
#-----
ExternalStimulus=NeuronGroup(NE, 'rates = rate_changes(t) : Hz',threshold='rand() < rates * dt')
#==========================================================================
#Independent External Stimulus (constant)
#==========================================================================
ExtFreq=2*Hz ; N_ext=int(NE*prob_p)
PoissonEonI= PoissonInput(neuronsI, 'ge', N=N_ext, rate=ExtFreq, weight=Ge_extI)
PoissonEonE = PoissonInput(neuronsE, 'ge', N=N_ext, rate=ExtFreq, weight=Ge_extE)
#==========================================================================
#External Current
#==========================================================================
neuronsI.I = 0.*namp
neuronsE.I = 0.*namp
##########################################################################################
#Synaptic Connections
############################################################################################
#===========================================
#FS-RS Network (AI Network)
#===========================================
con_ee = Synapses(neuronsE, neuronsE, on_pre='ge_post += Gee', delay=Delay)
con_ee.connect(p=prob_Pee)
con_ii = Synapses(neuronsI, neuronsI, on_pre='gi_post += Gii', delay=Delay)
con_ii.connect(p=prob_Pii)
con_ie = Synapses(neuronsI, neuronsE, on_pre='gi_post += Gie', delay=Delay)
con_ie.connect(p=prob_Pie)
con_ei = Synapses(neuronsE, neuronsI, on_pre='ge_post += Gei', delay=Delay)
con_ei.connect(p=prob_Pei)
#===========================================
#Time dependent External Input
#===========================================
con_ExtStN_E=Synapses(ExternalStimulus, neuronsE, on_pre='ge_post += Ge_extE', delay=0.*ms)
con_ExtStN_E.connect(p=prob_p)
con_ExtStN_I=Synapses(ExternalStimulus, neuronsI, on_pre='ge_post += Ge_extI', delay=0.*ms)
con_ExtStN_I.connect(p=prob_p)
########################################################################################
# Simulation
########################################################################################
#Recording informations from the groups of neurons
#FS
statemonI = StateMonitor(neuronsI, ['v'], record=[0])
spikemonI = SpikeMonitor(neuronsI, variables='t')
#RS
statemonE = StateMonitor(neuronsE, ['v'], record=[0])
spikemonE = SpikeMonitor(neuronsE, variables='t')
run(t_simulation)
####################################################################################################
#Organizing Neuronal Spikes (for LFP Calculation)
####################################################################################################
starting_time=1000 #ms -> WARNING: Everything should be in ms
ending_time=t_simulation/ms
duration=ending_time-starting_time
NeuronIDE=np.array(spikemonE.i)
NeuronIDI=np.array(spikemonI.i)
timeE=np.array(spikemonE.t/ms) #time in ms
timeI=np.array(spikemonI.t/ms)
#Taking only a subgroups of neurons
Nsub=1000
NEsub=int(Nsub*4./5.); NIsub=int(Nsub/5.)
NeuronIDEsub=NeuronIDE[NeuronIDE<NEsub]
NeuronIDIsub=NeuronIDI[NeuronIDI<NIsub]+NEsub #---> this +NEsub is important for the code bellow
timeEsub=timeE[NeuronIDE<NEsub]
timeIsub=timeI[NeuronIDI<NIsub]
#Cutting Transient Part:
NeuronID_E=NeuronIDEsub[((timeEsub>=starting_time) & (timeEsub<ending_time))]
time_E=timeEsub[((timeEsub>=starting_time) & (timeEsub<ending_time))]
NeuronID_I=NeuronIDIsub[((timeIsub>=starting_time) & (timeIsub<ending_time))]
time_I=timeIsub[((timeIsub>=starting_time) & (timeIsub<ending_time))]
##################################################################
# Distributing cells in a 2D grid:
##################################################################
xmax = 0.2 # size of the array (in mm)
ymax = 0.2
X, Y = np.random.rand(2, Nsub) * np.array([[xmax, ymax]]).T
#0 to NEsub-1: RS
#NEsub to NEsub+NIsub-1: FS1
####################################################################################################
#LFP Parameters
####################################################################################################
# Table of respective amplitudes:
# Layer amp_i amp_e
# deep -2 -1.6
# soma 30 4.8
# sup -12 2.4
# surf 3 -0.8
#
#----------------------------------------------
"""
These parameters were taken from the article:
Telenczuk B, Telenczuk M, Destexhe A (2020)
A kernel-based method to calculate local field
potentials from networks of spiking neurons
Journal of Neuroscience Methods
"""
#----------------------------------------------
time_resolution = 0.1 # time resolution
npts = int(duration / time_resolution) # nb points in LFP vector
xe = xmax / 2
ye = ymax / 2 # coordinates of electrode
va = 200 # axonal velocity (mm/sec)
lambda_ = 0.2 # space constant (mm)
dur = 100 # total duration of LFP waveform
nlfp = int(dur / time_resolution) # nb of LFP pts
amp_e = 0.7 # uLFP amplitude for exc cells
amp_i = -3.4 # uLFP amplitude for inh cells
sig_i = 2.1 # std-dev of ihibition (in ms)
sig_e = 1.5 * sig_i # std-dev for excitation
# amp_e = -0.16 # exc uLFP amplitude (deep layer)
# amp_i = -0.2 # inh uLFP amplitude (deep layer)
amp_e = 0.48 # exc uLFP amplitude (soma layer)
amp_i = 3 # inh uLFP amplitude (soma layer)
# amp_e = 0.24 # exc uLFP amplitude (superficial layer)
# amp_i = -1.2 # inh uLFP amplitude (superficial layer)
# amp_e = -0.08 # exc uLFP amplitude (surface)
# amp_i = 0.3 # inh uLFP amplitude (surface)
dist = np.sqrt((X - xe) ** 2 + (Y - ye) ** 2) # distance to electrode in mm
delay = 10.4 + dist / va # delay to peak (in ms)
amp = np.exp(-dist / lambda_)
amp[:NE] *= amp_e
amp[NE:] *= amp_i
s_e = 2 * sig_e * sig_e
s_i = 2 * sig_i * sig_i
Time_LFP= (np.arange(npts) * time_resolution) + starting_time #in ms
####################################################################################################
#LFP Calculation Functions
####################################################################################################
"""
This code was taken from the article: Telenczuk B, Telenczuk M, Destexhe A (2020)
A kernel-based method to calculate local field potentials from networks of spiking neurons
Journal of Neuroscience Methods
The code is originaly available at:
https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=266508&file=%2fdemo_kernel%2fdemo_lfp_kernel.py#tabs-2
"""
#=======================================
def f_temporal_kernel(t, tau):
#function defining temporal part of the kernel
return np.exp(-(t ** 2) / tau)
def calc_lfp(cells_time,cells_id,tau):
#Calculate LFP from cells
# this is a vectorised computation and as such it might be memory hungry
# for long LFP series/large number of cells it may be more efficient to calculate it through looping
spt = cells_time
cid = cells_id
kernel_contribs = amp[None, cid] * f_temporal_kernel(
Time_LFP[:, None] - delay[None, cid] - spt[None, :], tau
)
lfp = kernel_contribs.sum(1)
return lfp
####################################################################################################
#LFP Calculation
####################################################################################################
lfp_E = calc_lfp(time_E,NeuronID_E,s_e)
lfp_I = calc_lfp(time_I,NeuronID_I,s_i)
LFP = lfp_E + lfp_I
####################################################################################
#Oscilation Phase (By Hilbert Transform)
####################################################################################
zLFP=ZscoreNorm(LFP)
FreqBand=40 #Hz
lowcut_main=FreqBand-10 ; highcut_main=FreqBand+10 #Hz #Warning: if the bondaries are not well-chosen the result is bad
Phase_time,LFPFiltered_main,LFP_thatOverLapsFileteredOne,Envelope_main,Oscillation_Phase_main=SignalPhase_byHilbert(zLFP, Time_LFP/1000., lowcut_main, highcut_main,time_resolution*(10**-3)) #Phase from -pi to pi -> pick apears approx at 0
####################################################################################
#Figure Output
####################################################################################
#---------------------------------------------
#Adding spike picks to membrane potential:
#---------------------------------------------
Membrane_time=statemonI[0].t/second
Membrane_I=statemonI[0].v/mV; Membrane_E=statemonE[0].v/mV
#---Spike Times per Neuron----
SpikeTimesE = spikemonE.all_values()
SpikeTimesI = spikemonI.all_values()
#-------------------------------------
v_nicerI=Membrane_I
for T in SpikeTimesI['t'][0]:
k = int(T/defaultclock.dt)
v_nicerI[k] = 0 #mV
v_nicerE=Membrane_E
for T in SpikeTimesE['t'][0]:
k = int(T/defaultclock.dt)
v_nicerE[k] = 0 #mV
#---------------------------------------------
#Plotting:
#---------------------------------------------
Fig=plt.figure(figsize=(20,28))
plt.subplots_adjust(hspace=0.7, wspace=0.4)
matplotlib.rc('xtick', labelsize=30)
matplotlib.rc('ytick', labelsize=30)
figa=Fig.add_subplot(411)
plt.title('External Drive', fontsize=30)
plt.plot(ExtFreqPattern_time, ExtFreqPattern+ExtFreq/Hz,ls='--',color='k', linewidth=4)
plt.ylabel('Poissonian \n Frequency [Hz]', fontsize=30)
plt.xlabel('Time [s]', fontsize=30)
plt.xlim(2.3,3.4)
figa=Fig.add_subplot(412)
len_set=1000
plt.title('Raster Plot', fontsize=30)
plt.scatter(spikemonI.t[spikemonI.i<len_set]/second, spikemonI.i[spikemonI.i<len_set], color='red',s=50,label="FS")
plt.scatter(spikemonE.t[spikemonE.i<len_set]/second, spikemonE.i[spikemonE.i<len_set] + len_set, color='green',s=50,label="RS")
plt.legend(loc='best', fontsize=30)
plt.xlabel('Time [s]', fontsize=30)
plt.ylabel('Neuron Index', fontsize=30)
plt.xlim(2.3,3.4)
figa=Fig.add_subplot(413)
plt.title('Membrane Potential', fontsize=30)
plt.plot(Membrane_time,v_nicerE,color='green', linewidth=4,alpha=0.7,label='Random RS Neuron')
plt.plot(Membrane_time,v_nicerI,color='red', linewidth=4,alpha=0.7,label='Random FS Neuron')
plt.legend(loc='best', fontsize=30)
plt.xlabel('Time [s]', fontsize=30)
plt.ylabel('V [mV]', fontsize=30)
plt.xlim(2.3,3.4)
figa=Fig.add_subplot(414)
plt.title('Simulated LFP', fontsize=30)
plt.plot(Phase_time,LFP_thatOverLapsFileteredOne,color='k',label='Raw LFP')
plt.plot(Phase_time,LFPFiltered_main,linewidth=4,color='orange',label="Filtered LFP "+str(int(lowcut_main))+"-"+str(int(highcut_main))+" Hz")
plt.plot(Phase_time,Envelope_main,linewidth=4,color='purple',label="Hilbert Envelope")
plt.axhline(y=mean(Envelope_main),linestyle='-',linewidth=4, color='m')#,label=r'Mean Envelope ($\mu$)')
plt.axhline(y=mean(Envelope_main)+np.std(Envelope_main),linestyle='--',linewidth=4, color='m')#,label=r'$\mu$+$\sigma$')
plt.legend(loc='best', fontsize=30)
plt.xlabel('Time [s]', fontsize=30)
plt.xlim(2.3,3.4)
figa.set_yticks([])
plt.tight_layout()
plt.savefig("RS-FS.png")
#plt.show()