-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathremote_infer_grpc.py
286 lines (244 loc) · 12.1 KB
/
remote_infer_grpc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import random
import numpy as np
import cv2
import time
import torch
import torchvision
import argparse
import requests
import grpc
import grpc_predict_v2_pb2_grpc
import grpc_predict_v2_pb2
import time
import yaml
class ort_v5:
def __init__(self, grpc_host, grpc_port, model_name, img_size, classes):
self.host = grpc_host
self.port = grpc_port
self.model_name = model_name
self.img_size=img_size
self.names= classes
self.names_array= self.class_name()
options = [('grpc.max_receive_message_length', 100 * 1024 * 1024)]
self.channel = grpc.insecure_channel(f"{self.host}:{self.port}", options = options)
self.stub = grpc_predict_v2_pb2_grpc.GRPCInferenceServiceStub(self.channel)
def __call__(self, img_data, conf_thres, iou_thres):
"""
Makes a prediction on a given image by calling an inference endpoint served by ModelMesh.
The model is based on YoloV5 (https://github.com/ultralytics/yolov5), exported as ONNX, and served
using OpenVino Model Server.
"""
start_time = time.time()
# image preprocessing
image_or= cv2.imread(img_data)
image, ratio, dwdh = self.letterbox(image_or, auto=False) # Resize and pad image
image = image.transpose((2, 0, 1)) # HWC->CHW for PyTorch model
image = np.expand_dims(image, 0) # Model expects an array of images
image = np.ascontiguousarray(image) # Speed up things by rewriting the array contiguously in memory
im = image.astype(np.float32) # Model expects float32 data type
im /= 255 # Convert RGB values [0-255] to [0-1]
# request content building
inputs = []
inputs.append(grpc_predict_v2_pb2.ModelInferRequest().InferInputTensor())
inputs[0].name = "images"
inputs[0].datatype = "FP32"
inputs[0].shape.extend([1, 3, 640, 640])
arr = im.flatten()
inputs[0].contents.fp32_contents.extend(arr)
# request building
request = grpc_predict_v2_pb2.ModelInferRequest()
request.model_name = self.model_name
request.inputs.extend(inputs)
# Call the gRPC server and get the response
t1 = time.time()
try:
response = self.stub.ModelInfer(request)
except grpc.RpcError as e:
if e.code() == StatusCode.UNAVAILABLE:
raise Exception("Failed to connect to gRPC server")
else:
raise Exception(f"Failed to call gRPC server: {e.details()}")
t2 = time.time()
inference_time = t2-t1
# unserialize response content
result_arr = np.frombuffer(response.raw_output_contents[0], dtype=np.float32)
# Response processing
names= self.class_name()
output = torch.tensor(result_arr) # Create a tensor from array
prediction_columns_number = 5 + len(self.names_array) # Model returns model returns [xywh, conf, class0, class1, ...]
output = output.reshape(1, int(int(output.shape[0])/prediction_columns_number), prediction_columns_number) # Reshape the flat array prediction
out = self.non_max_suppression(output, conf_thres, iou_thres)[0] # Run NMS to remove overlapping boxes
img = self.result(image_or,ratio, dwdh, out) # Draw the boxes from results
end_time = time.time()
execution_time = end_time - start_time
result = f"{img_data} processed in {execution_time:.2f} seconds, inference time {inference_time:.2f} seconds"
return img, out, result
def box_iou(self,box1, box2, eps=1e-7):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
# IoU = inter / (area1 + area2 - inter)
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
def non_max_suppression(self,
prediction,
conf_thres,
iou_thres,
classes=None,
agnostic=False,
multi_label=False,
labels=(),
max_det=300,
nm=0, # number of masks
):
"""Non-Maximum Suppression (NMS) on inference results to reject overlapping detections
Returns:
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
"""
if isinstance(prediction, (list, tuple)): # YOLOv5 model in validation model, output = (inference_out, loss_out)
prediction = prediction[0] # select only inference output
device = prediction.device
mps = 'mps' in device.type # Apple MPS
if mps: # MPS not fully supported yet, convert tensors to CPU before NMS
prediction = prediction.cpu()
bs = prediction.shape[0] # batch size
nc = prediction.shape[2] - nm - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates
# Checks
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
# Settings
# min_wh = 2 # (pixels) minimum box width and height
max_wh = 7680 # (pixels) maximum box width and height
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
time_limit = 0.5 + 0.05 * bs # seconds to quit after
redundant = True # require redundant detections
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
merge = False # use merge-NMS
t = time.time()
mi = 5 + nc # mask start index
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# Cat apriori labels if autolabelling
if labels and len(labels[xi]):
lb = labels[xi]
v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
v[:, :4] = lb[:, 1:5] # box
v[:, 4] = 1.0 # conf
v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls
x = torch.cat((x, v), 0)
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box/Mask
box = self.xywh2xyxy(x[:, :4]) # center_x, center_y, width, height) to (x1, y1, x2, y2)
mask = x[:, mi:] # zero columns if no masks
# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)
else: # best class only
conf, j = x[:, 5:mi].max(1, keepdim=True)
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Apply finite constraint
# if not torch.isfinite(x).all():
# x = x[torch.isfinite(x).all(1)]
# Check shape
n = x.shape[0] # number of boxes
if not n: # no boxes
continue
elif n > max_nms: # excess boxes
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
else:
x = x[x[:, 4].argsort(descending=True)] # sort by confidence
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
if i.shape[0] > max_det: # limit detections
i = i[:max_det]
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = self.box_iou(boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
output[xi] = x[i]
if mps:
output[xi] = output[xi].to(device)
if (time.time() - t) > time_limit:
# LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
break # time limit exceeded
return output
def xywh2xyxy(self, x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
# Read classes
def class_name(self):
with open(self.names, 'r') as f:
data = yaml.safe_load(f)
classes = [data['names'][i] for i in data['names']]
return classes
def letterbox(self, im, color=(114, 114, 114), auto=True, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
new_shape= self.img_size
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, r, (dw, dh)
def result(self,img,ratio, dwdh, out):
names= self.class_name()
colors = {name:[random.randint(0, 255) for _ in range(3)] for i,name in enumerate(names)}
for i,(x0,y0,x1,y1,score,cls_id) in enumerate(out):
box = np.array([x0,y0,x1,y1])
box -= np.array(dwdh*2)
box /= ratio
box = box.round().astype(np.int32).tolist()
cls_id = int(cls_id)
score = round(float(score),3)
name = names[cls_id]
color = colors[name]
name += ' '+str(score)
cv2.rectangle(img,box[:2],box[2:],color,2)
cv2.putText(img,name,(box[0], box[1] - 2),cv2.FONT_HERSHEY_SIMPLEX,0.75,[0, 255, 0],thickness=2)
return img