-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDFAGenerator.java
executable file
·322 lines (252 loc) · 10.4 KB
/
DFAGenerator.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.HashSet;
/**
* A class that models a DFA generator: given a white list, the program generates a DFA
* and minimizes it. It then returns a string representation of the DFA.
*
* @author michaelroytman
*
*/
public class DFAGenerator {
//a map from a state number to a state; represents all the states of the machine
private Map<Integer, Node> states = new HashMap<Integer, Node>();
private Node startState; //pointer to start state
private Node deadState; //a "dead state," useful for minimization
private int stateNumber = 1; //counter of states in the machine; 0 is start stage
//alphabet recognized by this machine
private String alphabet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890.";
//represents a table for the table filling algorithm
private int[][] stateMatrix;
//a map from each node to a set of nodes that it is indistinguishable to
private Map<Node, HashSet<Node>> indistinguishablePairs;
private Map<HashSet<Node>, Node> mergedState;
/**
* Constructor for DFA generator, which constructs the start state and puts it in the states map.
*/
public DFAGenerator() {
startState = new Node("S");
states.put(0, startState);
}
/**
* A method that generated a string representation of a DFA given a whitelist of accepted strings.
* @param whitelist
* @return
*/
public String generate(Set<String> whitelist) {
//this maintains the position in the graph while adding states for a given string
Node pointer = startState;
//loops for each string in our whitelist
for (String acceptedString : whitelist) {
//a case for the empty string - we need to make the start state an accept state
if (acceptedString.equals("")) {
startState.makeAcceptState();
}
//loops for each character in a given string in the whitelist
for (int i = 0; i < acceptedString.length(); i++) {
//character as a String
String symbol = acceptedString.charAt(i) + "";
//if our graph does not have a transition with the given character, we create a new state for it
if (!pointer.getTransitions().containsKey(symbol)) {
//create a new state represented by state + number of state in the machine
Node state = new Node("Q", stateNumber);
states.put(stateNumber, state);
//increments counter because we have parsed a character
stateNumber++;
//we have reached the accept state, so we make our state the accept state
if (i == acceptedString.length()-1) {
state.makeAcceptState();
}
//add a transition from the pointer to state via a symbol character
pointer.addTransition(symbol, state);
//reassignment of pointers
//if character was the last in the string, pointer points to start state
if (i == acceptedString.length()-1) {
pointer = startState;
}
//else, pointer is our new state
else {
pointer = state;
}
}
//if our graph has a transition from the pointer to another state via the given character,
//we simply move to that state upon consuming the character
else {
//reassignment of pointer
pointer = pointer.getTransitions().get(symbol);
//if the character was the last in the string, we make the pointer an accept state
//and reassign the pointer to the start state
if (i == acceptedString.length()-1) {
pointer.makeAcceptState();
pointer = startState;
}
}
}
}
//minimizes the DFA
minimize();
//removes dead state before creating machine string
states.remove(deadState.getNumber());
//returns string representation of the machine
return toString();
}
/**
* Method that returns the String representation of the DFA.
*/
public String toString() {
//initializes a StringBuilder to build the string representation of the machine
StringBuilder machineRepresentation = new StringBuilder();
//for all states in the set of states in our machine
for (Node state : states.values()) {
//we get the transitions for a given state
Map<String, Node> transitions = state.getTransitions();
//for all entries in a given state's transitions
for (Map.Entry<String, Node> entry : transitions.entrySet()) {
//we add a string for each transition in the following format: "symbol, from-state, to-state"
//state to which state leads on symbol
Node toState = entry.getValue();
if (toState != null) {
machineRepresentation.append(entry.getKey() + "," + state.toString() + ", " + entry.getValue() + "\n");
}
}
}
//return string representation of machine
return machineRepresentation.toString();
}
/**
* Method that minimizes the DFA per the table filling algorithm.
*/
public void minimize() {
//creates a dead state
deadState = new Node("dead-state", stateNumber);
//puts dead state in the map
states.put(stateNumber, deadState);
//creates new state matrix of size (number of states)x(number of states)
stateMatrix = new int[states.size()][states.size()];
//adds transitions from dead state to itself on all characters of alphabet
for (int h = 0; h < alphabet.length(); h++) {
deadState.addTransition((alphabet.charAt(h)+""), deadState);
}
//performs the first pass over the matrix
firstPass();
//represents whether or not change was made to matrix
boolean changeMade = true;
//loop while changeMade == true; that is, while changes are occuring in the matrix
while (changeMade) {
changeMade = false;
//traverse half the matrix (halves are equal)
for (int i = 0; i < states.size(); i++) {
for (int j = 0; j <= i; j++) {
//fromState1 and fromState2 form a pair
Node fromState1 = states.get(i);
Node fromState2 = states.get(j);
//for each character in the alphabet
for(int k = 0; k < alphabet.length(); k++) {
//toState1 and toState2 form a pair
Node toState1 = fromState1.getTransitions().get((alphabet.charAt(k)+""));
Node toState2 = fromState2.getTransitions().get((alphabet.charAt(k)+""));
//initialize states to deadState if they do not have a transition for a character
if (toState1 == null) {
toState1 = deadState;
}
if (toState2 == null) {
toState2 = deadState;
}
//if toState pair is marked as distinguishable, then marked fromState pair as distinguishable
//and set changeMade to true
if (stateMatrix[toState1.getNumber()][toState2.getNumber()]==1) {
if (stateMatrix[fromState1.getNumber()][fromState2.getNumber()] == 0) {
stateMatrix[fromState1.getNumber()][fromState2.getNumber()]=1;
stateMatrix[fromState2.getNumber()][fromState1.getNumber()]=1;
changeMade = true;
}
}
}
}
}
}
//after matrix is complete, merge distinguishable states
merge();
}
/**
* Method that performs the first pass over the matrix. It checks whether any pair of states,
* is distinguishable if only one of them is an accept state.
*/
public void firstPass() {
//traverses matrix
for (Node state1 : states.values()) {
for (Node state2 : states.values()) {
//if only one state of the pair is an accept state, the pair is marked indistinguishable
if ((state1.isAcceptState() && state2.isNonAcceptState()) || (state1.isNonAcceptState() && state2.isAcceptState())) {
stateMatrix[state1.getNumber()][state2.getNumber()] = 1;
stateMatrix[state2.getNumber()][state1.getNumber()] = 1;
}
}
}
}
/**
* Method that merges indistinguishable states in the DFA.
*/
public void merge() {
//a map of Nodes to a Set that contain the nodes that they are indistinguishable to, including itself
indistinguishablePairs = new HashMap<Node, HashSet<Node>>();
//a map of Sets that contain indistinguishable nodes to the Node that will remain in the machine post-
//minimization
mergedState = new HashMap<HashSet<Node>, Node>();
//set of nodes to be deleted from the DFA; unnecessary states
HashSet<Node> toBeDeleted = new HashSet<Node>();
//traverse half the matrix (halves are equal)
//fills up indistinguishablePairs map
for (int i = 0; i < states.size(); i++) {
for (int j = 0; j < i; j++) {
if (stateMatrix[i][j] == 0) {
Node state1 = states.get(i);
Node state2 = states.get(j);
HashSet<Node> pair = new HashSet<Node>();
//puts indistinguishable states in set
pair.add(state1);
pair.add(state2);
//puts set in map for both states
indistinguishablePairs.put(state1, pair);
indistinguishablePairs.put(state2, pair);
//choose state1 to be our merged state
mergedState.put(pair, state1);
//add state2 to set to be deleted
toBeDeleted.add(state2);
}
}
}
//values of states; all the states in the machine
Collection<Node> values = states.values();
//traverses all states in the machine
for (Node state : values) {
//the set of characters which state has transition for
Set<String> keys = state.getTransitions().keySet();
for (String symbol : keys) {
Set<Node> mergedSet = indistinguishablePairs.keySet(); //sets of all states that are indistinguishable
Node toState = state.getTransitions().get(symbol); //state that state goes to on character
//if toState is indistinguishable to something
if (mergedSet.contains(toState)) {
//the state that we are going to be merging into
Node merged = mergedState.get(indistinguishablePairs.get(toState));
//add a transition from state to the state that will remain in the graph on that character
state.addTransition(symbol, merged);
}
//if the state is a state that will be merged into another one and is the one that will remain in the DFA
//and if it does not have a transition for a given character that one of its indistinguishable partner does,
//add that transition to the remaining state.
if (mergedSet.contains(state) && mergedState.get(indistinguishablePairs.get(state)).equals(state)) {
if (!mergedState.get(indistinguishablePairs.get(state)).getTransitions().containsKey(symbol)) {
mergedState.get(indistinguishablePairs.get(state)).addTransition(symbol, state.getTransitions().get(symbol));
}
}
}
}
//remove nodes to be deleted
for (Node state : toBeDeleted) {
states.remove(state.getNumber());
}
}
}