-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkaslr_helper.c
736 lines (642 loc) · 19.1 KB
/
kaslr_helper.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/*
* kaslr_helper - helper for kaslr offset calculation
*
* Copyright (c) 2011 FUJITSU LIMITED
* Copyright (c) 2018 Red Hat Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Authors: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
* INDOH Takao <indou.takao@jp.fujitsu.com>
* Sergio Lopez <slp@redhat.com>
*/
#include "defs.h"
#include <elf.h>
#include <inttypes.h>
#ifdef X86_64
/*
* Get address of vector0 interrupt handler (Devide Error) from Interrupt
* Descriptor Table.
*/
static ulong
get_vec0_addr(ulong idtr)
{
struct gate_struct64 {
uint16_t offset_low;
uint16_t segment;
uint32_t ist : 3, zero0 : 5, type : 5, dpl : 2, p : 1;
uint16_t offset_middle;
uint32_t offset_high;
uint32_t zero1;
} __attribute__((packed)) gate;
readmem(idtr, PHYSADDR, &gate, sizeof(gate), "idt_table", FAULT_ON_ERROR);
return ((ulong)gate.offset_high << 32)
+ ((ulong)gate.offset_middle << 16)
+ gate.offset_low;
}
/*
* Parse a string of [size[KMG] ]offset[KMG]
* Import from Linux kernel(lib/cmdline.c)
*/
static ulong
memparse(char *ptr, char **retptr)
{
char *endptr;
unsigned long long ret = strtoull(ptr, &endptr, 0);
switch (*endptr) {
case 'E':
case 'e':
ret <<= 10;
case 'P':
case 'p':
ret <<= 10;
case 'T':
case 't':
ret <<= 10;
case 'G':
case 'g':
ret <<= 10;
case 'M':
case 'm':
ret <<= 10;
case 'K':
case 'k':
ret <<= 10;
endptr++;
default:
break;
}
if (retptr)
*retptr = endptr;
return ret;
}
/*
* Find "elfcorehdr=" in the boot parameter of kernel and return the address
* of elfcorehdr.
*/
static ulong
get_elfcorehdr(ulong kaslr_offset)
{
char cmdline[BUFSIZE], *ptr;
ulong cmdline_vaddr;
ulong cmdline_paddr;
ulong buf_vaddr, buf_paddr;
char *end;
ulong elfcorehdr_addr = 0, elfcorehdr_size = 0;
int verbose = CRASHDEBUG(1)? 1: 0;
cmdline_vaddr = st->saved_command_line_vmlinux + kaslr_offset;
if (!kvtop(NULL, cmdline_vaddr, &cmdline_paddr, verbose))
return 0;
if (CRASHDEBUG(1)) {
fprintf(fp, "cmdline vaddr=%lx\n", cmdline_vaddr);
fprintf(fp, "cmdline paddr=%lx\n", cmdline_paddr);
}
if (!readmem(cmdline_paddr, PHYSADDR, &buf_vaddr, sizeof(ulong),
"saved_command_line", RETURN_ON_ERROR))
return 0;
if (!kvtop(NULL, buf_vaddr, &buf_paddr, verbose))
return 0;
if (CRASHDEBUG(1)) {
fprintf(fp, "cmdline buffer vaddr=%lx\n", buf_vaddr);
fprintf(fp, "cmdline buffer paddr=%lx\n", buf_paddr);
}
memset(cmdline, 0, BUFSIZE);
if (!readmem(buf_paddr, PHYSADDR, cmdline, BUFSIZE,
"saved_command_line", RETURN_ON_ERROR))
return 0;
ptr = strstr(cmdline, "elfcorehdr=");
if (!ptr)
return 0;
if (CRASHDEBUG(1))
fprintf(fp, "2nd kernel detected\n");
ptr += strlen("elfcorehdr=");
elfcorehdr_addr = memparse(ptr, &end);
if (*end == '@') {
elfcorehdr_size = elfcorehdr_addr;
elfcorehdr_addr = memparse(end + 1, &end);
}
if (CRASHDEBUG(1)) {
fprintf(fp, "elfcorehdr_addr=%lx\n", elfcorehdr_addr);
fprintf(fp, "elfcorehdr_size=%lx\n", elfcorehdr_size);
}
return elfcorehdr_addr;
}
/*
* Get vmcoreinfo from elfcorehdr.
* Some codes are imported from Linux kernel(fs/proc/vmcore.c)
*/
static int
get_vmcoreinfo(ulong elfcorehdr, ulong *addr, int *len)
{
unsigned char e_ident[EI_NIDENT];
Elf64_Ehdr ehdr;
Elf64_Phdr phdr;
Elf64_Nhdr nhdr;
ulong ptr;
ulong nhdr_offset = 0;
int i;
if (!readmem(elfcorehdr, PHYSADDR, e_ident, EI_NIDENT,
"EI_NIDENT", RETURN_ON_ERROR))
return FALSE;
if (e_ident[EI_CLASS] != ELFCLASS64) {
error(INFO, "Only ELFCLASS64 is supportd\n");
return FALSE;
}
if (!readmem(elfcorehdr, PHYSADDR, &ehdr, sizeof(ehdr),
"Elf64_Ehdr", RETURN_ON_ERROR))
return FALSE;
/* Sanity Check */
if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 ||
(ehdr.e_type != ET_CORE) ||
ehdr.e_ident[EI_CLASS] != ELFCLASS64 ||
ehdr.e_ident[EI_VERSION] != EV_CURRENT ||
ehdr.e_version != EV_CURRENT ||
ehdr.e_ehsize != sizeof(Elf64_Ehdr) ||
ehdr.e_phentsize != sizeof(Elf64_Phdr) ||
ehdr.e_phnum == 0) {
error(INFO, "Invalid elf header\n");
return FALSE;
}
ptr = elfcorehdr + ehdr.e_phoff;
for (i = 0; i < ehdr.e_phnum; i++) {
ulong offset;
char name[16];
if (!readmem(ptr, PHYSADDR, &phdr, sizeof(phdr),
"Elf64_Phdr", RETURN_ON_ERROR))
return FALSE;
ptr += sizeof(phdr);
if (phdr.p_type != PT_NOTE)
continue;
offset = phdr.p_offset;
if (!readmem(offset, PHYSADDR, &nhdr, sizeof(nhdr),
"Elf64_Nhdr", RETURN_ON_ERROR))
return FALSE;
offset += DIV_ROUND_UP(sizeof(Elf64_Nhdr), sizeof(Elf64_Word))*
sizeof(Elf64_Word);
memset(name, 0, sizeof(name));
if (!readmem(offset, PHYSADDR, name, sizeof(name),
"Elf64_Nhdr name", RETURN_ON_ERROR))
return FALSE;
if(!strcmp(name, "VMCOREINFO")) {
nhdr_offset = offset;
break;
}
}
if (!nhdr_offset)
return FALSE;
*addr = nhdr_offset +
DIV_ROUND_UP(nhdr.n_namesz, sizeof(Elf64_Word))*
sizeof(Elf64_Word);
*len = nhdr.n_descsz;
if (CRASHDEBUG(1)) {
fprintf(fp, "vmcoreinfo addr=%lx\n", *addr);
fprintf(fp, "vmcoreinfo len=%d\n", *len);
}
return TRUE;
}
static int
qemu_get_nr_cpus(void)
{
if (DISKDUMP_DUMPFILE())
return diskdump_get_nr_cpus();
else if (KDUMP_DUMPFILE())
return kdump_get_nr_cpus();
return 0;
}
static int
qemu_get_cr3_cr4_idtr(int cpu, ulong *cr3, ulong *cr4, ulong *idtr)
{
QEMUCPUState *cpustat;
if (DISKDUMP_DUMPFILE())
cpustat = diskdump_get_qemucpustate(cpu);
else if (KDUMP_DUMPFILE())
cpustat = kdump_get_qemucpustate(cpu);
else
return FALSE;
if (!cpustat)
return FALSE;
*cr3 = cpustat->cr[3];
*cr4 = cpustat->cr[4];
*idtr = cpustat->idt.base;
return TRUE;
}
/*
* Check if current kaslr_offset/phys_base is for 1st kernel or 2nd kernel.
* If we are in 2nd kernel, get kaslr_offset/phys_base from vmcoreinfo.
*
* 1. Get command line and try to retrieve "elfcorehdr=" boot parameter
* 2. If "elfcorehdr=" is not found in command line, we are in 1st kernel.
* There is nothing to do.
* 3. If "elfcorehdr=" is found, we are in 2nd kernel. Find vmcoreinfo
* using "elfcorehdr=" and retrieve kaslr_offset/phys_base from vmcoreinfo.
*/
static int
get_kaslr_offset_from_vmcoreinfo(ulong orig_kaslr_offset,
ulong *kaslr_offset, ulong *phys_base)
{
ulong elfcorehdr_addr = 0;
ulong vmcoreinfo_addr;
int vmcoreinfo_len;
char *buf, *pos;
int ret = FALSE;
/* Find "elfcorehdr=" in the kernel boot parameter */
elfcorehdr_addr = get_elfcorehdr(orig_kaslr_offset);
if (!elfcorehdr_addr)
return FALSE;
/* Get vmcoreinfo from the address of "elfcorehdr=" */
if (!get_vmcoreinfo(elfcorehdr_addr, &vmcoreinfo_addr, &vmcoreinfo_len))
return FALSE;
if (!vmcoreinfo_len)
return FALSE;
if (CRASHDEBUG(1))
fprintf(fp, "Find vmcoreinfo in kdump memory\n");
buf = GETBUF(vmcoreinfo_len);
if (!readmem(vmcoreinfo_addr, PHYSADDR, buf, vmcoreinfo_len,
"vmcoreinfo", RETURN_ON_ERROR))
goto quit;
/* Get phys_base form vmcoreinfo */
pos = strstr(buf, "NUMBER(phys_base)=");
if (!pos)
goto quit;
*phys_base = strtoull(pos + strlen("NUMBER(phys_base)="), NULL, 0);
/* Get kaslr_offset form vmcoreinfo */
pos = strstr(buf, "KERNELOFFSET=");
if (!pos)
goto quit;
*kaslr_offset = strtoull(pos + strlen("KERNELOFFSET="), NULL, 16);
ret = TRUE;
quit:
FREEBUF(buf);
return ret;
}
static int
get_nr_cpus(void)
{
if (SADUMP_DUMPFILE())
return sadump_get_nr_cpus();
else if (QEMU_MEM_DUMP_NO_VMCOREINFO())
return qemu_get_nr_cpus();
else if (VMSS_DUMPFILE())
return vmware_vmss_get_nr_cpus();
return 0;
}
static int
get_cr3_cr4_idtr(int cpu, ulong *cr3, ulong *cr4, ulong *idtr)
{
if (SADUMP_DUMPFILE())
return sadump_get_cr3_cr4_idtr(cpu, cr3, cr4, idtr);
else if (QEMU_MEM_DUMP_NO_VMCOREINFO())
return qemu_get_cr3_cr4_idtr(cpu, cr3, cr4, idtr);
else if (VMSS_DUMPFILE())
return vmware_vmss_get_cr3_cr4_idtr(cpu, cr3, cr4, idtr);
return FALSE;
}
#define BANNER "Linux version"
static int
verify_kaslr_offset(ulong kaslr_offset)
{
char buf[sizeof(BANNER)];
ulong linux_banner_paddr;
if (!kvtop(NULL, st->linux_banner_vmlinux + kaslr_offset,
&linux_banner_paddr, CRASHDEBUG(1)))
return FALSE;
if (!readmem(linux_banner_paddr, PHYSADDR, buf, sizeof(buf),
"linux_banner", RETURN_ON_ERROR))
return FALSE;
if (!STRNEQ(buf, BANNER))
return FALSE;
return TRUE;
}
/*
* Find virtual (VA) and physical (PA) addresses of kernel start
*
* va:
* Actual address of the kernel start (_stext) placed
* randomly by kaslr feature. To be more accurate,
* VA = _stext(from vmlinux) + kaslr_offset
*
* pa:
* Physical address where the kerenel is placed.
*
* In nokaslr case, VA = _stext (from vmlinux)
* In kaslr case, virtual address of the kernel placement goes
* in this range: ffffffff80000000..ffffffff9fffffff, or
* __START_KERNEL_map..+512MB
*
* https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
*
* Randomized VA will be the first valid page starting from
* ffffffff80000000 (__START_KERNEL_map). Page tree entry of
* this page will contain the PA of the kernel start.
*/
static int
find_kernel_start(uint64_t pgd, ulong *va, ulong *pa)
{
int pgd_idx, p4d_idx, pud_idx, pmd_idx, pte_idx;
uint64_t pgd_pte = 0, pud_pte, pmd_pte, pte;
pgd_idx = pgd_index(__START_KERNEL_map);
if (machdep->flags & VM_5LEVEL)
p4d_idx = p4d_index(__START_KERNEL_map);
pud_idx = pud_index(__START_KERNEL_map);
pmd_idx = pmd_index(__START_KERNEL_map);
pte_idx = pte_index(__START_KERNEL_map);
/* If the VM is in 5-level page table */
if (machdep->flags & VM_5LEVEL)
*va = ~((1UL << 57) - 1);
else
*va = ~__VIRTUAL_MASK;
FILL_PGD(pgd & PHYSICAL_PAGE_MASK, PHYSADDR, PAGESIZE());
for (; pgd_idx < PTRS_PER_PGD; pgd_idx++) {
pgd_pte = ULONG(machdep->pgd + pgd_idx * sizeof(uint64_t));
if (pgd_pte & _PAGE_PRESENT)
break;
p4d_idx = pud_idx = pmd_idx = pte_idx = 0;
}
if (pgd_idx == PTRS_PER_PGD)
return FALSE;
*va |= (ulong)pgd_idx << __PGDIR_SHIFT;
if (machdep->flags & VM_5LEVEL) {
FILL_P4D(pgd_pte & PHYSICAL_PAGE_MASK, PHYSADDR, PAGESIZE());
for (; p4d_idx < PTRS_PER_P4D; p4d_idx++) {
/* reuse pgd_pte */
pgd_pte = ULONG(machdep->machspec->p4d + p4d_idx * sizeof(uint64_t));
if (pgd_pte & _PAGE_PRESENT)
break;
pud_idx = pmd_idx = pte_idx = 0;
}
if (p4d_idx == PTRS_PER_P4D)
return FALSE;
*va |= (ulong)p4d_idx << P4D_SHIFT;
}
FILL_PUD(pgd_pte & PHYSICAL_PAGE_MASK, PHYSADDR, PAGESIZE());
for (; pud_idx < PTRS_PER_PUD; pud_idx++) {
pud_pte = ULONG(machdep->pud + pud_idx * sizeof(uint64_t));
if (pud_pte & _PAGE_PRESENT)
break;
pmd_idx = pte_idx = 0;
}
if (pud_idx == PTRS_PER_PUD)
return FALSE;
*va |= (ulong)pud_idx << PUD_SHIFT;
if (pud_pte & _PAGE_PSE) {
/* 1GB page */
*pa = pud_pte & PHYSICAL_PAGE_MASK;
return TRUE;
}
FILL_PMD(pud_pte & PHYSICAL_PAGE_MASK, PHYSADDR, PAGESIZE());
for (; pmd_idx < PTRS_PER_PMD; pmd_idx++) {
pmd_pte = ULONG(machdep->pmd + pmd_idx * sizeof(uint64_t));
if (pmd_pte & _PAGE_PRESENT)
break;
pte_idx = 0;
}
if (pmd_idx == PTRS_PER_PMD)
return FALSE;
*va |= pmd_idx << PMD_SHIFT;
if (pmd_pte & _PAGE_PSE) {
/* 2MB page */
*pa = pmd_pte & PHYSICAL_PAGE_MASK;
return TRUE;
}
FILL_PTBL(pmd_pte & PHYSICAL_PAGE_MASK, PHYSADDR, PAGESIZE());
for (; pte_idx < PTRS_PER_PTE; pte_idx++) {
pte = ULONG(machdep->ptbl + pte_idx * sizeof(uint64_t));
if (pte & _PAGE_PRESENT)
break;
}
if (pte_idx == PTRS_PER_PTE)
return FALSE;
*va |= pte_idx << PAGE_SHIFT;
*pa = pmd_pte & PHYSICAL_PAGE_MASK;
return TRUE;
}
/*
* Page Tables based method to calculate kaslr_offset and phys_base.
* It uses VA and PA of kernel start.
*
* kaslr offset and phys_base are calculated as follows:
*
* kaslr_offset = VA - st->_stext_vmlinux
* phys_base = PA - (VA - __START_KERNEL_map)
*/
static int
calc_kaslr_offset_from_page_tables(uint64_t pgd, ulong *kaslr_offset,
ulong *phys_base)
{
ulong va, pa;
if (!st->_stext_vmlinux || st->_stext_vmlinux == UNINITIALIZED) {
fprintf(fp, "%s: st->_stext_vmlinux must be initialized\n",
__FUNCTION__);
return FALSE;
}
if (!find_kernel_start(pgd, &va, &pa))
return FALSE;
if (CRASHDEBUG(1)) {
fprintf(fp, "calc_kaslr_offset: _stext(vmlinux): %lx\n", st->_stext_vmlinux);
fprintf(fp, "calc_kaslr_offset: kernel start VA: %lx\n", va);
fprintf(fp, "calc_kaslr_offset: kernel start PA: %lx\n", pa);
}
*kaslr_offset = va - st->_stext_vmlinux;
*phys_base = pa - (va - __START_KERNEL_map);
return TRUE;
}
/*
* IDT based method to calculate kaslr_offset and phys_base
*
* kaslr offset and phys_base are calculated as follows:
*
* kaslr_offset:
* 1) Get IDTR and CR3 value from the dump header.
* 2) Get a virtual address of IDT from IDTR value
* --- (A)
* 3) Translate (A) to physical address using CR3, the upper 52 bits
* of which points a top of page table.
* --- (B)
* 4) Get an address of vector0 (Devide Error) interrupt handler from
* IDT, which are pointed by (B).
* --- (C)
* 5) Get an address of symbol "divide_error" form vmlinux
* --- (D)
*
* Now we have two addresses:
* (C)-> Actual address of "divide_error"
* (D)-> Original address of "divide_error" in the vmlinux
*
* kaslr_offset can be calculated by the difference between these two
* value.
*
* phys_base;
* 1) Get IDT virtual address from vmlinux
* --- (E)
*
* So phys_base can be calculated using relationship of directly mapped
* address.
*
* phys_base =
* Physical address(B) -
* (Virtual address(E) + kaslr_offset - __START_KERNEL_map)
*
* Note that the address (A) cannot be used instead of (E) because (A) is
* not direct map address, it's a fixed map address.
*
* NOTE: This solution works in most every case, but does not work in the
* following case. If the dump is captured on early stage of kernel boot,
* IDTR points to the early IDT table(early_idts) instead of normal
* IDT(idt_table). Need enhancement.
*/
static int
calc_kaslr_offset_from_idt(uint64_t idtr, uint64_t pgd, ulong *kaslr_offset, ulong *phys_base)
{
uint64_t idtr_paddr;
ulong divide_error_vmcore;
int verbose = CRASHDEBUG(1)? 1: 0;
if (!idtr)
return FALSE;
/* Convert virtual address of IDT table to physical address */
if (!kvtop(NULL, idtr, &idtr_paddr, verbose))
return FALSE;
/* Now we can calculate kaslr_offset and phys_base */
divide_error_vmcore = get_vec0_addr(idtr_paddr);
*kaslr_offset = divide_error_vmcore - st->divide_error_vmlinux;
*phys_base = idtr_paddr -
(st->idt_table_vmlinux + *kaslr_offset - __START_KERNEL_map);
if (verbose) {
fprintf(fp, "calc_kaslr_offset: idtr=%lx\n", idtr);
fprintf(fp, "calc_kaslr_offset: pgd=%lx\n", pgd);
fprintf(fp, "calc_kaslr_offset: idtr(phys)=%lx\n", idtr_paddr);
fprintf(fp, "calc_kaslr_offset: divide_error(vmlinux): %lx\n",
st->divide_error_vmlinux);
fprintf(fp, "calc_kaslr_offset: divide_error(vmcore): %lx\n",
divide_error_vmcore);
}
return TRUE;
}
/*
* Calculate kaslr_offset and phys_base
*
* kaslr_offset:
* The difference between original address in System.map or vmlinux and
* actual address placed randomly by kaslr feature. To be more accurate,
* kaslr_offset = actual address - original address
*
* phys_base:
* Physical address where the kerenel is placed. In other words, it's a
* physical address of __START_KERNEL_map. This is also decided randomly by
* kaslr.
*
* It walks through all available CPUs registers to calculate the offset/base.
*
* Also, it considers the case where dump is captured whle kdump is working,
* IDTR points to the IDT table of 2nd kernel, not 1st kernel.
* In that case, get kaslr_offset and phys_base as follows.
*
* 1) Get kaslr_offset and phys_base using the above solution.
* 2) Get kernel boot parameter from "saved_command_line"
* 3) If "elfcorehdr=" is not included in boot parameter, we are in the
* first kernel, nothing to do any more.
* 4) If "elfcorehdr=" is included in boot parameter, we are in the 2nd
* kernel. Retrieve vmcoreinfo from address of "elfcorehdr=" and
* get kaslr_offset and phys_base from vmcoreinfo.
*/
#define PTI_USER_PGTABLE_BIT PAGE_SHIFT
#define PTI_USER_PGTABLE_MASK (1 << PTI_USER_PGTABLE_BIT)
#define CR3_PCID_MASK 0xFFFull
#define CR4_LA57 (1 << 12)
int
calc_kaslr_offset(ulong *ko, ulong *pb)
{
uint64_t cr3 = 0, cr4 = 0, idtr = 0, pgd = 0;
ulong kaslr_offset, phys_base;
ulong kaslr_offset_kdump, phys_base_kdump;
int cpu, nr_cpus;
if (!machine_type("X86_64"))
return FALSE;
nr_cpus = get_nr_cpus();
for (cpu = 0; cpu < nr_cpus; cpu++) {
if (!get_cr3_cr4_idtr(cpu, &cr3, &cr4, &idtr))
continue;
if (!cr3)
continue;
if (st->pti_init_vmlinux || st->kaiser_init_vmlinux)
pgd = cr3 & ~(CR3_PCID_MASK|PTI_USER_PGTABLE_MASK);
else
pgd = cr3 & ~CR3_PCID_MASK;
/*
* Set up for kvtop.
*
* calc_kaslr_offset() is called before machdep_init(PRE_GDB), so some
* variables are not initialized yet. Set up them here to call kvtop().
*
* TODO: XEN is not supported
*/
vt->kernel_pgd[0] = pgd;
machdep->last_pgd_read = vt->kernel_pgd[0];
if (cr4 & CR4_LA57) {
machdep->flags |= VM_5LEVEL;
machdep->machspec->physical_mask_shift = __PHYSICAL_MASK_SHIFT_5LEVEL;
machdep->machspec->pgdir_shift = PGDIR_SHIFT_5LEVEL;
machdep->machspec->ptrs_per_pgd = PTRS_PER_PGD_5LEVEL;
if ((machdep->machspec->p4d = (char *)malloc(PAGESIZE())) == NULL)
error(FATAL, "cannot malloc p4d space.");
machdep->machspec->last_p4d_read = 0;
} else {
machdep->machspec->physical_mask_shift = __PHYSICAL_MASK_SHIFT_2_6;
machdep->machspec->pgdir_shift = PGDIR_SHIFT;
machdep->machspec->ptrs_per_pgd = PTRS_PER_PGD;
}
if (!readmem(pgd, PHYSADDR, machdep->pgd, PAGESIZE(),
"pgd", RETURN_ON_ERROR))
continue;
if (!calc_kaslr_offset_from_page_tables(pgd, &kaslr_offset,
&phys_base)) {
if (!calc_kaslr_offset_from_idt(idtr, pgd,
&kaslr_offset,
&phys_base))
continue;
}
if (verify_kaslr_offset(kaslr_offset))
goto found;
}
vt->kernel_pgd[0] = 0;
machdep->last_pgd_read = 0;
return FALSE;
found:
/*
* Check if current kaslr_offset/phys_base is for 1st kernel or 2nd
* kernel. If we are in 2nd kernel, get kaslr_offset/phys_base
* from vmcoreinfo
*/
if (get_kaslr_offset_from_vmcoreinfo(kaslr_offset, &kaslr_offset_kdump,
&phys_base_kdump)) {
kaslr_offset = kaslr_offset_kdump;
phys_base = phys_base_kdump;
} else if (CRASHDEBUG(1)) {
fprintf(fp, "kaslr_helper: failed to determine which kernel was running at crash,\n");
fprintf(fp, "kaslr_helper: asssuming the kdump 1st kernel.\n");
}
if (CRASHDEBUG(1)) {
fprintf(fp, "calc_kaslr_offset: kaslr_offset=%lx\n",
kaslr_offset);
fprintf(fp, "calc_kaslr_offset: phys_base=%lx\n", phys_base);
}
*ko = kaslr_offset;
*pb = phys_base;
vt->kernel_pgd[0] = 0;
machdep->last_pgd_read = 0;
return TRUE;
}
#else
int
calc_kaslr_offset(ulong *kaslr_offset, ulong *phys_page)
{
return FALSE;
}
#endif /* X86_64 */