-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathproject_jaffe.py
261 lines (203 loc) · 9.86 KB
/
project_jaffe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# coding: utf-8
import cv2 # opencv
import tensorflow as tf #tensorflow
import glob # to read files
import numpy as np
import os
from random import shuffle
dirImage = './jaffe/'
filenames = []
labels = []
filenames += glob.glob(dirImage+"/*"+".tiff")
for i in filenames:
labels.append(''.join(i.strip().split('.')[2:3])[:-1])
#print(labels)
#print("Processing " + str(len(filenames)) + " images")
#print(filenames)
def get_sift(img):
#img = denormalize_image(img)
img = cv2.imread(img)
#img = np.array(img*255, dtype="uint8")
gray= cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
sift = cv2.xfeatures2d.SIFT_create()
kp = sift.detect(gray,None)
img=cv2.drawKeypoints(gray,kp,None)
#cv2.imshow('result', img)
#cv2.waitKey(0)
#cv2.destroyWindow("result")
return img
images = []
for file in filenames:
#img = np.asarray(cv2.imread(file, 0))
img = get_sift(file)
images.append(img)
#images = np.asarray(images)
#print(images)
emotion = ['NE', 'HA', 'SA', 'SU', 'AN', 'DI', 'FE' ]
for i in range(7):
for j in range(len(labels)):
if labels[j] == emotion[i]:
labels[j] = i
labels_count = len(emotion)
#print(labels)
TRAINING_SIZE = 170
VALIDATION_SIZE = len(images) - TRAINING_SIZE
temp = np.array([images, labels])
temp = temp.transpose()
shuffle(temp)
images = list(temp[:, 0])
images = np.stack(images, axis = 0)
labels = list(temp[:, 1])
labels = [int(i) for i in labels]
train_images = images[:TRAINING_SIZE, :, : ] # 170, 256, 256
test_images = images[TRAINING_SIZE:, :, : ]
print(type(train_images))
#label_file = open('temp_labels.txt');
#label_data = label_file.read()
#labels = []
#for i in xrange(len(label_data)):
# if (label_data[i]!='\n'):
# labels.append(float(label_data[i]))
train_labels = np.asarray(labels[:TRAINING_SIZE], dtype=int)
test_labels = np.asarray(labels[170:], dtype=int)
#print(train_labels.shape[0])
def dense_to_one_hot(labels_dense, num_classes):
num_labels = len(labels_dense)
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
# print(type(np.int_(index_offset + labels_dense.ravel())))
labels_one_hot.flat[np.int_(index_offset + labels_dense.ravel())] = 1
return labels_one_hot
train_labels = dense_to_one_hot(train_labels.ravel(), labels_count)
# labels = labels.astype(np.uint8)
test_labels = dense_to_one_hot(test_labels.ravel(), labels_count)
#print(train_labels.shape)
train_images = train_images.reshape(TRAINING_SIZE, -1)
test_images = test_images.reshape(VALIDATION_SIZE, -1)
print(train_images.shape)
train_image_pixels = train_images.shape[1]
#print('Flat pixel values is %d'%(train_image_pixels))
train_image_width = np.int_(np.ceil(np.sqrt(train_image_pixels/3.0)))
train_image_height = np.int_(np.ceil(np.sqrt(train_image_pixels/3.0)))
# # Build TF CNN model
def new_conv_layer(input_data, num_input_channels, num_filters, filter_shape, pool_shape, name):
# setup input filter state
conv_filt_shape = [filter_shape[0], filter_shape[1], num_input_channels, num_filters]
# initialise weights and bias
weights = tf.Variable(tf.truncated_normal(conv_filt_shape, stddev=0.03), name=name+'_W')
bias = tf.Variable(tf.truncated_normal([num_filters]), name=name+'_b')
# setup convolutional layer
out_layer = tf.nn.conv2d(input_data, weights, [1, 1, 1, 1], padding='SAME')
out_layer += bias
# applying relu non-linear activation
out_layer = tf.nn.relu(out_layer)
# performing max pooling
ksize = [1, 2, 2, 1]
strides = [1, 2, 2, 1]
out_layer = tf.nn.max_pool(out_layer, ksize=ksize, strides=strides, padding='SAME')
return out_layer
# input & output of NN
# images
x = tf.placeholder(tf.float32, [None, train_image_width * train_image_height*3.0])
# dynamically reshaping input
x_shaped = tf.reshape(x, [-1, train_image_width, train_image_height, 3])
# labels
y = tf.placeholder(tf.float32, [None, labels_count])
keep_prob = tf.placeholder(tf.float32)
# creating sparse layers of CNN
conv1 = tf.layers.conv2d(x_shaped, filters=32, kernel_size=[3, 3], strides=[1, 1], padding='same',activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.1),name='conv1')
bn1 = tf.layers.batch_normalization(conv1, training=True, name='bn1')
pool1 = tf.layers.max_pooling2d(bn1, pool_size=[2, 2], strides=[2, 2], padding='same', name='pool1')
conv2 = tf.layers.conv2d(pool1, filters=128, kernel_size=[3, 3], strides=[1, 1], padding='same',activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.1),name='conv2')
bn2 = tf.layers.batch_normalization(conv2, training=True, name='bn2')
pool2 = tf.layers.max_pooling2d(bn2, pool_size=[2, 2], strides=[2, 2], padding='same', name='pool2')
conv3 = tf.layers.conv2d(pool1, filters=256, kernel_size=[3, 3], strides=[1, 1], padding='same',activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.1),name='conv3')
bn3 = tf.layers.batch_normalization(conv3, training=True, name='bn3')
pool3 = tf.layers.max_pooling2d(bn3, pool_size=[2, 2], strides=[2, 2], padding='same', name='pool3')
conv4 = tf.layers.conv2d(pool1, filters=128, kernel_size=[3, 3], strides=[1, 1], padding='same',activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.1),name='conv4')
bn4 = tf.layers.batch_normalization(conv4, training=True, name='bn4')
pool4 = tf.layers.max_pooling2d(bn4, pool_size=[2, 2], strides=[2, 2], padding='same', name='pool4')
flatten_layer = tf.contrib.layers.flatten(pool4, 'flatten_layer')
weights = tf.get_variable(shape=[flatten_layer.shape[-1], labels_count], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1), name='fc_weights')
biases = tf.get_variable(shape=[labels_count], dtype=tf.float32,initializer=tf.constant_initializer(0.0), name='fc_biases')
logit_output = tf.nn.bias_add(tf.matmul(flatten_layer, weights), biases, name='logit_output')
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logit_output))
y_ = tf.nn.softmax(logit_output)
pred_label = tf.argmax(logit_output, 1)
label = tf.argmax(y, 1)
accuracy = tf.reduce_mean(tf.cast(tf.equal(pred_label, label), tf.float32))
'''
layer1 = new_conv_layer(x_shaped, 3, 32, [5, 5], [2, 2], name='layer1')
bn1 = tf.layers.batch_normalization(layer1, training=True, name='bn1')
pool1 = tf.layers.max_pooling2d(bn1, pool_size=[2, 2], strides=[2, 2], padding='same', name='pool1')
layer2 = new_conv_layer(layer1, 32, 64, [5, 5], [2, 2], name='layer2')
bn2 = tf.layers.batch_normalization(conv2, training=True, name='bn2')
layer3 = new_conv_layer(layer2, 64, 128, [5, 5], [2, 2], name='layer3')
layer4 = new_conv_layer(layer3, 128, 256, [5, 5], [2, 2], name='layer4')
flattened = tf.reshape(layer4, [-1, 16 * 16 * 256])
#flattened = tf.reshape(layer1, [-1, 32 * 32 * 512])
# calculating dense layers of CNN
wd1 = tf.Variable(tf.truncated_normal([16 * 16 * 256, 500], stddev=0.03), name='wd1')
bd1 = tf.Variable(tf.truncated_normal([500], stddev=0.01), name='bd1')
dense_layer1 = tf.matmul(flattened, wd1) + bd1
dense_layer1 = tf.nn.relu(dense_layer1)
# dropout for reducing overfitting
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(dense_layer1, keep_prob)
# another layer for softmax calculation and readout
wd2 = tf.Variable(tf.truncated_normal([500, labels_count], stddev=0.03), name='wd2')
bd2 = tf.Variable(tf.truncated_normal([labels_count], stddev=0.01), name='bd2')
dense_layer2 = tf.matmul(dense_layer1, wd2) + bd2
y_ = tf.nn.softmax(dense_layer2)
keep_prob = tf.placeholder(tf.float32)
wd2 = tf.Variable(tf.truncated_normal([32 * 32 * 512, labels_count], stddev=0.03), name='wd2')
bd2 = tf.Variable(tf.truncated_normal([labels_count], stddev=0.01), name='bd2')
dense_layer2 = tf.matmul(flattened, wd2) + bd2
y_ = tf.nn.softmax(dense_layer2)
'''
# cross entropy cost function
#cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=dense_layer2, labels=y))
# # Training CNN
# set to 3000 iterations
epochs = 100
DROPOUT = 0.5
batch_size = 16
# settings
learning_rate = 1e-3
os.environ["CUDA_VISIBLE_DEVICES"] = "5"
# adding optimiser
optimiser = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cross_entropy)
# defining accuracy assessment operation
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# setting up the initialisation operator
init_op = tf.global_variables_initializer()
# recording variable to store accuracy
tf.summary.scalar('accuracy', accuracy)
saver = tf.train.Saver()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('logs')
with tf.Session() as sess:
# initialising variables
sess.run(init_op)
total_batch = int(len(train_labels) / batch_size)
for epoch in range(epochs):
avg_cost = 0
batch_index = 0
for j in range(total_batch):
train_batch_images = train_images[batch_index:(batch_index+batch_size), :]
train_batch_labels = train_labels[batch_index:(batch_index+batch_size), :]
_, c = sess.run([optimiser, cross_entropy], feed_dict={x:train_batch_images, y:train_batch_labels, keep_prob:DROPOUT})
avg_cost += c
batch_index += batch_size
train_acc = sess.run(accuracy, feed_dict={x:train_images, y:train_labels})
test_acc = sess.run(accuracy, feed_dict={x: test_images, y: test_labels})
print("Epoch:", (epoch + 1), "cost =", "{:.3f}".format(avg_cost), "train accuracy: {:.3f}".format(train_acc), "test accuracy: {:.3f}".format(test_acc))
save_path = './model/jaffe-model.ckpt'
saver.save(sess, save_path)
summary = sess.run(merged, feed_dict={x: test_images, y: test_labels})
writer.add_summary(summary, epoch)
print("\nTraining complete!")
writer.add_graph(sess.graph)
print(sess.run(accuracy, feed_dict={x: test_images, y: test_labels}))