-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathselftrain.py
588 lines (520 loc) · 24 KB
/
selftrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import argparse
import copy
import os
import socket
import sys
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from neptune.new.integrations.pytorch_lightning import NeptuneLogger
from neptune.new.types import File
from pytorch_lightning.callbacks import LearningRateMonitor
from sklearn.metrics import cohen_kappa_score
from loadMat4 import custom_collate_fn, sleepEEGcontainer1, trainingEEGDataset_1
from SeqSleepNet import EnsembleModel, SeqSleepPL
from utils import log_histograms, log_pseudo_histograms
######################################
# Parse arguments
######################################
parser = argparse.ArgumentParser()
# Add PROGRAM level args
# fmt: off
parser.add_argument("--seed", default=None, help="random seed", type=int)
parser.add_argument("--normalize", action="store_true", default=False, help="normalize input")
parser.add_argument("--early_stopping_delay", default=None, help="early stopping delay", type=int)
parser.add_argument("--experiment_name", default=None, help="name of experiment", type=str)
parser.add_argument("--swa", action="store_true", default=False, help="use stochastic weight averaging")
parser.add_argument("--cv_range", nargs="*", help="which CV to train", type=int, default=None)
parser.add_argument("--cv_weights", nargs="*", help="weights for trained CV models", type=str, default=None)
parser.add_argument("--cv_weights_folders", nargs="*", help="folders with weights for trained CV models (CV{i}.ckpt)", type=str, default=None)
parser.add_argument("--run_id", default=None, help="name of log to use") # Alternatively export NEPTUNE_CUSTOM_RUN_ID="<custom_id>" in bash
parser.add_argument("--continue_training", action="store_true", default=False, help="continue training of teacher weights")
parser.add_argument("--ensemble_pseudo_labels", action="store_true", default=False, help="use custom ensemble predictions as pseudo-labels (avg. based)")
parser.add_argument("--confidence_threshold", default=0.0, help="minimum threshold for samples to be used as pseudolabels", type=float)
parser.add_argument("--hard_pseudo_labels", action="store_true", default=False, help="use one-hot encoded pseudo-labels (default uses soft pseudo-labels)")
parser.add_argument("--temperature", default=1, help="temperature for soft pseudo-labels", type=float)
parser.add_argument("--tags", nargs="*", help="tags to add to neptune logger", type=str)
parser.add_argument("--n_pseudo_nights", default=None, type=int, help="number of pseudo-nights to use during training (default: None, corresponds to all)")
parser.add_argument("--seed_nights", default=None, type=int, help="random seed when sampling n nights")
parser.add_argument("--use_test_nights", default=False, action="store_true", help="use 4 test nights as part of pseudo data")
parser.add_argument("--test_night_idx", default=None, type=int, help="use the single test night with idx = test_night_idx as unlabeled test night")
parser.add_argument("--derivation", default="eeg_lr", type=str, choices=["eeg_lr", "ear_eog1", "eeg_l"], help="name of derivation to use for training (only a single derivation can be used here)")
parser.add_argument("--skip_non_pseudo", default=False, action="store_true", help="skip CV-steps for subjects without unlabeled data")
parser.add_argument("--ensemble_test_type", default="avg", type=str, choices=["prod", "avg"], help="type of ensemble to use for student")
parser.add_argument("--load_pseudo_labels", default=None, type=str, help="dir of pseudo_labels to be loaded from disc (automatically appends CV{test_idx}.csv)")
parser.add_argument("--save_pseudo_labels", default=None, type=str, help="dir of pseudo_labels to be saved to disc (automatically appends CV{test_idx}.csv)")
parser.add_argument("--soft_training_data", default=False, action="store_true", help="use pseudo-labels on training data as well")
parser.add_argument("--no_training_data", default=False, action="store_true", help="use only unlabeled data as distillation data")
parser.add_argument("--data_dir", default=None, type=str, help="path to data directory")
parser.add_argument("--unlabeled_data_dir", default=None, type=str, help="path to unlabeled data directory")
group = parser.add_mutually_exclusive_group()
group.add_argument( "--all_pseudo_subjects", action="store_true", default=False, help="use all pseudo-subjects (default uses only pseudo-subjects in training fold)")
group.add_argument( "--only_test_pseudo_subjects", action="store_true", default=False, help="use only test pseudo-subjects (default uses only pseudo-subjects in training fold)")
group.add_argument( "--only_non_test_pseudo_subjects", action="store_true", default=False, help="use all other than test pseudo-subjects (default uses only pseudo-subjects in training fold)")
group.add_argument( "--no_pseudo_subjects", action="store_true", default=False, help="use no pseudo-subjects - need to be combined with use_test_nights")
# fmt: on
# Add model specific args
parser = SeqSleepPL.add_model_specific_args(parser)
# Add all the available trainer options to argparse. ie: now --gpus --num_nodes ... --fast_dev_run all work in the cli
parser = pl.Trainer.add_argparse_args(parser)
# Parse args
args = parser.parse_args()
# Customize args
if args.cv_range is None:
args.cv_range = (1, 20)
elif len(args.cv_range) == 1:
args.cv_range = (args.cv_range[0], args.cv_range[0])
elif len(args.cv_range) > 2:
raise NotImplementedError(
f"cv_range should be either the largest cv (one value) or the range (two values), not {args.cv_range}"
)
if args.cv_weights is not None:
assert ((args.cv_range[1] + 1) - args.cv_range[0]) == len(args.cv_weights)
args.seed = np.random.choice(range(0, 100)) if args.seed is None else args.seed
args.experiment_name = (
f"SeqSleepNet"
if args.experiment_name is None
else args.experiment_name
if args.experiment_name is None
else args.experiment_name
)
args.tags = [] if args.tags is None else args.tags
# Print arguments
params = vars(args)
print("Experiment settings:")
for key, val in params.items():
print(f'{" "*4}{key}: {val}')
######################################
# Import data
######################################
# Find data
matDir = (
args.data_dir
if os.path.basename(args.data_dir) == "mat"
else os.path.join(args.data_dir, "mat")
)
loadedData = sleepEEGcontainer1.fromDirectory(matDir, deriv=args.derivation)
print("Data loaded")
# Unlabeled data
unlabeledDir = (
args.unlabeled_data_dir
if os.path.basename(args.unlabeled_data_dir) == "mat"
else os.path.join(args.unlabeled_data_dir, "mat")
)
unlabeledData = sleepEEGcontainer1.fromDirectory(
unlabeledDir, deriv="ear_ego1" if args.derivation == "ear_eog1" else args.derivation
)
print(f"Unlabeled data exist for subjects: {np.unique(unlabeledData.subjectName)}")
pseudo_subjects = np.unique(unlabeledData.subjectName)
# Normalize data
if args.normalize:
loadedData.normalize()
unlabeledData.normalize( # Use mean and std from labeled data
mean=loadedData.normalize_mean, std=loadedData.normalize_std
)
######################################
# Perform Cross-Validation
######################################
# Loop over test sets and train
pl.seed_everything(args.seed)
allKappas = np.zeros((20, 2))
allKappas[:, 0] = np.arange(1, 21)
run_id = args.run_id
for test_idx in range(args.cv_range[0], args.cv_range[1] + 1):
pl.seed_everything(args.seed)
# Skip CV if no pseudo_labels and settings require it
if args.skip_non_pseudo:
if test_idx not in pseudo_subjects:
print(f"\nSkipping CV{test_idx}")
allKappas[test_idx - 1, 1] = np.nan
continue
else:
print(f"\nRunning CV{test_idx}")
# Initialize logger and save parameters
neptune_logger = NeptuneLogger(
project="your/project", # FIXME: Add your project on neptune here
name=args.experiment_name,
base_namespace=f"CV{test_idx}",
run=run_id,
tags=["selftrain"] + args.tags,
close_after_fit=False,
monitoring_namespace=f"monitoring-cv{test_idx}",
)
neptune_logger.experiment["parameters"] = params
# Get train and validation folds
rest = np.delete(np.arange(1, 21), test_idx - 1)
assert len(rest) == 19
shuffled_order = np.random.permutation(rest)
train_idx = shuffled_order[0:15]
val_idx = shuffled_order[15:19]
print(f"Training folds: {train_idx}")
print(f"Validation folds: {val_idx}")
# Get pseudo-folds
if args.only_test_pseudo_subjects:
unlabeled_train_idx = unlabeledData.filterSubjects(np.array([test_idx]))
elif args.all_pseudo_subjects:
unlabeled_train_idx = unlabeledData.filterSubjects(np.arange(1, 21))
elif args.only_non_test_pseudo_subjects:
unlabeled_train_idx = unlabeledData.filterSubjects(
np.concatenate([train_idx, val_idx])
)
# If more than 9 subjects (= 108 nights) randomly choose only 9 subjects
print(f"Unlabeled subjects allowed for run: {np.unique(unlabeled_train_idx)}")
if len(unlabeled_train_idx) > 9:
unlabeled_train_idx = np.random.choice(
unlabeled_train_idx, 9, replace=False
)
print(f"Unlabeled subjects used for run: {np.unique(unlabeled_train_idx)}")
elif args.no_pseudo_subjects:
unlabeled_train_idx = np.array([])
else: # train subjects only
unlabeled_train_idx = unlabeledData.filterSubjects(train_idx)
print(f"Using pseudo data for subjects: {np.unique(unlabeled_train_idx)}")
######################################
# Load correct data
######################################
# Load data
trainX, trainy, trainLabels = loadedData.returnBySubject(train_idx)
valX, valy, valLabels = loadedData.returnBySubject(val_idx)
trainLabels_tensor = torch.tensor(trainLabels - 1).type(torch.long)
valLabels_tensor = torch.tensor(valLabels - 1).type(torch.long)
# Pytorch datasets
trainDataset = torch.utils.data.TensorDataset(
torch.tensor(trainX), torch.tensor(trainy), torch.arange(trainLabels.size)
)
valDataset = torch.utils.data.TensorDataset(
torch.tensor(valX), torch.tensor(valy), torch.arange(valLabels.size)
)
# DataLoaders
trainSampler = torch.utils.data.DataLoader(
trainingEEGDataset_1(trainDataset, args.L),
batch_size=5,
shuffle=True,
drop_last=True,
collate_fn=custom_collate_fn,
num_workers=8 if not args.auto_lr_find else 0,
pin_memory=True if args.gpus is not None else False,
)
valSampler = torch.utils.data.DataLoader(
valDataset,
batch_size=args.L * 5,
shuffle=False,
drop_last=True,
num_workers=8 if not args.auto_lr_find else 0,
pin_memory=True if args.gpus is not None else False,
)
########### Get pseudo data ###########
if not args.no_pseudo_subjects:
print(f"Using pseudo data for subjects: {np.unique(unlabeled_train_idx)}")
unlabeledX, _, _ = unlabeledData.returnBySubject(
unlabeled_train_idx, nights=args.n_pseudo_nights, seed=args.seed_nights
)
unlabeledX = torch.tensor(unlabeledX)
unlabeledIdx = torch.arange(unlabeledX.shape[0])
else:
unlabeledX = torch.tensor([])
unlabeledIdx = torch.arange(0)
# Get test_nights from labeled data
if args.use_test_nights:
testX, _, _ = loadedData.returnBySubject(
test_idx, night_idx=args.test_night_idx
)
testX = torch.tensor(testX)
testIdx = torch.arange(testX.shape[0])
else:
testX = torch.tensor([])
testIdx = torch.arange(0)
# Get 1A data for soft labeling
if args.soft_training_data:
soft_trainX = torch.tensor(trainX)
soft_trainIdx = torch.arange(soft_trainX.shape[0])
else:
soft_trainX = torch.tensor([])
soft_trainIdx = torch.arange(0)
# Combine data
pseudoX = torch.cat([unlabeledX, testX, soft_trainX], axis=0)
pseudoIdx = torch.cat([unlabeledIdx, testIdx, soft_trainIdx])
print(f"Amount of samples with soft labels: {len(pseudoIdx)}")
# Construct dataset
if len(pseudoIdx) != 0:
pseudoDataset = torch.utils.data.TensorDataset(pseudoX, pseudoIdx)
pseudoSampler = torch.utils.data.DataLoader(
pseudoDataset,
batch_size=args.L * 5,
shuffle=False,
drop_last=True,
num_workers=8 if not args.auto_lr_find else 0,
pin_memory=True if args.gpus is not None else False,
)
# Rescale amount of epochs/batches to be consistent:
args.limit_train_batches = float(
len(trainSampler) / (len(trainSampler) + len(pseudoSampler))
)
else:
# Rescale amount of epochs/batches to be consistent:
args.limit_train_batches = 1.0
######################################
# Prepare model and training
######################################
args.total_steps = len(trainSampler) * args.max_epochs
# Loading "teacher" model
if args.cv_weights_folders is not None:
weight_paths = [
os.path.join(w_folder, f"CV{test_idx}.ckpt")
for w_folder in args.cv_weights_folders
]
if args.cv_weights is not None:
weight_paths = [args.cv_weights[(test_idx - 1) - args.cv_range[0]]]
if len(weight_paths) == 1:
teacher = SeqSleepPL.load_from_checkpoint(Path(weight_paths[0]), hparams=args)
print(f"Weights loaded from {weight_paths}.")
elif len(weight_paths) >= 2:
teacher_models = [
SeqSleepPL.load_from_checkpoint(Path(w_path), hparams=args)
for w_path in weight_paths
]
print(f"Weights loaded from {weight_paths}.")
teacher_models = [
teacher.to("cuda" if torch.cuda.is_available() else "cpu")
for teacher in teacher_models
]
teacher = EnsembleModel(teacher_models)
print("Emsemble baseline created!")
# Initializing "student" model
if args.continue_training:
assert (
len(weight_paths) == 1
), "Can not continue training when baseline/teacher is an ensemble..."
print("Continue training of provided weights")
model = copy.deepcopy(teacher)
else:
print("Initializing new model")
model = SeqSleepPL(args)
print(f"Model on device: {model.device}")
# Collect callbacks
callback_list = []
# Model checkpoints
checkpoint_callback = pl.callbacks.ModelCheckpoint( # Save last checkpoint
filename=f"CV{test_idx}", save_top_k=None, monitor=None
)
callback_list.append(checkpoint_callback)
# Early stopping
if args.early_stopping_delay is not None:
early_stopping = pl.callbacks.EarlyStopping(
monitor="val/Kappa",
min_delta=0.00,
patience=args.early_stopping_delay,
verbose=True,
mode="max",
)
print("Using early stopping callback")
callback_list.append(early_stopping)
if args.swa:
swa_callback = pl.callbacks.StochasticWeightAveraging(
swa_epoch_start=0.8,
annealing_epochs=10,
)
print(f"Using SWA callback, and ignores all schedulers: {args.use_scheduler}.")
print("Using SWA callback.")
callback_list.append(swa_callback)
# Learning rate monitor
lr_monitor = LearningRateMonitor(logging_interval="epoch")
callback_list.append(lr_monitor)
# Prepare trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=callback_list,
logger=neptune_logger,
benchmark=True, # speeds up training if batch size is constant
progress_bar_refresh_rate=0,
weights_save_path="checkpoints/", # needed since, trainer.logger.save_dir fails otherwise
)
# If no pseudo-data is available continue, else get pseudo-predictions
if len(pseudoIdx) == 0:
print(
f"No pseudo data available for subject {test_idx}, training on normal training data."
)
combinedSampler = trainSampler
else:
if args.ensemble_pseudo_labels: # Use ensemble test for predictions (slow)
baseline_predicts = [
baseline.custom_ensemble_test(pseudoX, trainer)
for baseline in teacher_models
]
teacher_ensemble_preds = torch.stack(
[
torch.mean(baseline_pred["rolled_probs"], dim=0)
for baseline_pred in baseline_predicts
]
).mean(
dim=0
) # using average prob. vectors
y_pred = teacher_ensemble_preds.clone().detach()
else: # use only one prediction per epoch (fast)
predictions = trainer.predict(
teacher, combinedSampler, return_predictions=True
)
y_pred = torch.cat([pred.get("y_pred") for pred in predictions])
# Log predicted pseudo-probabilities
conf, pseudo_labels = torch.max(y_pred, 1)
log_pseudo_histograms(
neptune_logger, y_pred.cpu(), np.array(pseudo_labels.cpu()), test_idx
)
# Only use pseudo-labels with largest confidence above threshold
if args.confidence_threshold > 0:
confident_preds = conf > args.confidence_threshold
y_pred = y_pred[confident_preds]
print(
f"{sum(confident_preds)} confident pseudo samples (at {args.confidence_threshold}) of {len(confident_preds)} pseudo samples"
)
print(
f"Pseudo samples are distributed as {torch.bincount(pseudo_labels[confident_preds])}"
)
# Adapt pseudo-labels to soft or hard
if args.hard_pseudo_labels:
y_pred_hard = torch.zeros_like(y_pred)
y_pred_hard[torch.arange(y_pred.shape[0]), torch.argmax(y_pred, 1)] = 1
y_pred = y_pred_hard
elif args.temperature != 1:
y_pred = torch.nn.functional.softmax(
torch.log(y_pred) / args.temperature, 1
)
if args.no_training_data or args.soft_training_data:
print(
f"Note, since no_training_data is {args.no_training_data} and soft_training_data is {args.soft_training_data}, no original 1A training data is included."
)
combinedDataset = torch.utils.data.TensorDataset(
pseudoX[: y_pred.shape[0]], y_pred.cpu(), pseudoIdx[: y_pred.shape[0]]
)
else:
combinedDataset = torch.utils.data.TensorDataset(
torch.cat([torch.tensor(trainX), pseudoX[: y_pred.shape[0]]]),
torch.cat([torch.tensor(trainy), y_pred.cpu()]),
torch.cat(
[torch.arange(trainLabels.size), pseudoIdx[: y_pred.shape[0]]]
),
)
combinedSampler = torch.utils.data.DataLoader(
trainingEEGDataset_1(combinedDataset, args.L),
batch_size=5,
shuffle=True,
drop_last=True,
collate_fn=custom_collate_fn,
num_workers=8 if not args.auto_lr_find else 0,
pin_memory=True if args.gpus is not None else False,
)
print(
f"New dataset consist of {trainX.shape[0]*(not args.no_training_data)} training samples and {y_pred.shape[0]} pseudosamples."
)
# Perform auto_lr_find procedure and exit script afterwards. Can be used to find a *good* lr (highly dependent on weight_decay)
if args.auto_lr_find is not False:
print("Finding learning rate automatically.")
trainer.logger = []
lr_finder = trainer.tuner.lr_find(
model, train_dataloader=trainSampler, val_dataloaders=valSampler
)
args.learning_rate = lr_finder.suggestion()
params.update({"learning_rate": args.learning_rate})
trainer.logger = neptune_logger
neptune_logger.experiment["parameters"] = params
fig = lr_finder.plot(suggest=True)
neptune_logger.experiment["lr_finder"].upload(fig)
print(f"Auto-found and updated learning rate: {model.learning_rate}")
print("Exiting script. Find learning rate in logs.")
sys.exit()
######################################
# Train model
######################################
trainer.fit(model, combinedSampler, valSampler)
######################################
# Test model performance on test sample
######################################
# Get test data
testX, testy, testLabels = loadedData.returnBySubject(
test_idx, night_idx=args.test_night_idx
)
# Perform ensemble testing and calculate Cohen's Kappa
ensembleTesting = model.custom_ensemble_test(testX, trainer)
if (
args.ensemble_test_type == "avg"
): # Note this changes the ensemble_pred evaluation from product based to average based
ensembleTesting["ensemble_pred"] = torch.mean(
ensembleTesting["rolled_probs"], dim=0
)
_, pred_class = torch.max(ensembleTesting["ensemble_pred"], 1) # pred_class is 0-4
kappa = cohen_kappa_score(torch.unsqueeze(pred_class + 1, 1), testLabels.T)
# Calculate Cohen's Kappa if did not do ensemple
rolledKappas = np.zeros(args.L)
for iRoll in range(args.L):
_, pred_class = torch.max(
ensembleTesting["rolled_probs"][iRoll, :, :], 1
) # pred_class is 0-4
rolledKappas[iRoll] = cohen_kappa_score(
torch.unsqueeze(pred_class + 1, 1), testLabels.T
)
# Log histograms
log_histograms(
neptune_logger, ensembleTesting["ensemble_pred"], testLabels, test_idx
)
# Log test metrics
print("rolledKappas:", rolledKappas)
print("meanRolledKappa:", np.mean(rolledKappas))
print("Consensus:", test_idx, kappa)
neptune_logger.experiment["test/subjectKappa"].log(kappa)
neptune_logger.experiment["test/meanRolledKappa"].log(np.mean(rolledKappas))
# Save kappa for total log later
allKappas[test_idx - 1, 1] = kappa
# Continue to log in this run on neptune, but with newly initialized logger
if os.getenv("NEPTUNE_CUSTOM_RUN_ID", False):
run_id = None
else:
run_id = neptune_logger.experiment.get_run_url().split("/")[-1]
######################################
# Logging allKappas file to CV-folder on neptune
######################################
kappa_id = run_id if run_id is not None else os.getenv("NEPTUNE_CUSTOM_RUN_ID")
kappa_file = (
f"kappas/{str(kappa_id)}/{args.experiment_name}_allKappas_CV{test_idx}.csv"
)
try:
prev_kappas = np.loadtxt(kappa_file, delimiter=",")
prev_kappas[test_idx - 1, 1] = kappa
np.savetxt(kappa_file, prev_kappas, delimiter=",")
except:
os.makedirs(os.path.dirname(kappa_file), exist_ok=True)
np.savetxt(kappa_file, allKappas, delimiter=",")
neptune_logger.experiment[f"CV{test_idx}/allKappas"].upload(
File(kappa_file)
) # Log kappa_file to CV-folder on Neptune
# Stop this CV-logger
neptune_logger.experiment.stop()
######################################
# Perform final logging to 'total' folder
######################################
# Save all kappas to disk
kappa_id = run_id if run_id is not None else os.getenv("NEPTUNE_CUSTOM_RUN_ID")
kappa_file = f"kappas/{str(kappa_id)}/{args.experiment_name}_allKappas.csv"
try:
prev_kappas = np.loadtxt(kappa_file, delimiter=",")
allKappas[:, 1] += prev_kappas[:, 1]
except:
os.makedirs(os.path.dirname(kappa_file), exist_ok=True)
np.savetxt(kappa_file, allKappas, delimiter=",")
# Initialize logger to log total metrics
neptune_logger = NeptuneLogger(
project="kennethborup/ear-eeg-distill",
name=args.experiment_name,
tags=["selftrain"] + args.tags,
run=run_id,
proxies={"https": "http://proxyserv:3128"}
if "genomedk" in socket.getfqdn().split(".")
else None, # needed on genomedk
close_after_fit=False,
)
# Log metrics
print("allKappas", allKappas[:, 1])
print("meanKappas", np.mean(allKappas[:, 1]))
neptune_logger.experiment["total/allKappas"].upload(File(kappa_file))
neptune_logger.experiment["total/meanKappa"] = np.mean(allKappas[:, 1])
neptune_logger.experiment.stop()