forked from jspark1105/tbb_test
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp_bench_common.cc
190 lines (169 loc) · 6.75 KB
/
mlp_bench_common.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#include "mlp_bench_common.h"
#include <cstring>
using namespace std;
double sum_times[MAX_NUM_THREADS][nlayers][NUM_BREAKDOWNS_ROUNDED_UP] = {0},
sum_flops[nlayers][NUM_BREAKDOWNS] = {0};
unique_ptr<Matrix<float, PAD>> weights[nlayers], weight_grads[nlayers],
weight_grad_push_bufs[nlayers], activations[nlayers + 2];
vector<array<int, 8>> rings = {{0, 1, 2, 4, 7, 6, 5, 3},
{0, 3, 5, 6, 7, 4, 2, 1}};
void init_matrices() {
// initialize input
activations[0]->randFill(0.f, 1.f);
// initialize weights
for (int l = 0; l < nlayers; ++l) {
for (int i = 0; i < nfeatures[l + 1]; ++i) {
randFill(weights[l]->rawData(i, 0), weights[l]->ncols(), -0.1f, 0.1f);
}
for (int s = 1; s < nsockets; ++s) {
memcpy(
weights[l]->rawData(s * nfeatures[l + 1], 0),
weights[l]->rawData(),
nfeatures[l + 1] * weights[l]->ld() * sizeof(float));
}
}
}
double wall_clock_time = 0;
int nthreads, nthreads_per_socket;
void report_timing() {
// Compute load imbalance
double load_imbalance[nlayers][NUM_BREAKDOWNS];
double max_sum_times[nlayers][NUM_BREAKDOWNS];
for (int l = 0; l < nlayers; ++l) {
for (int t = 0; t < nthreads; ++t) {
sum_times[t][l][WGT_UPDATE] = sum_times[t][l][WGT_UPDATE_REDUCE_SCATTER] +
sum_times[t][l][WGT_UPDATE_ALLGATHER];
}
sum_flops[l][WGT_UPDATE] = sum_flops[l][WGT_UPDATE_REDUCE_SCATTER] +
sum_flops[l][WGT_UPDATE_ALLGATHER];
}
for (int l = 0; l < nlayers; ++l) {
for (int i = FWD; i < NUM_BREAKDOWNS; ++i) {
double sum = 0, max = 0;
if (i == WGT_GRAD || i == BWD) {
int nthreads_per_socket_for_gemm = nthreads_per_socket -
nthreads_per_socket_for_allreduce[nthreads_per_socket];
for (int sid = 0; sid < nsockets; ++sid) {
for (int tid_in_socket = 0;
tid_in_socket < nthreads_per_socket;
++tid_in_socket) {
int tid = sid * nthreads_per_socket + tid_in_socket;
sum += sum_times[tid][l][i];
max = std::max(max, sum_times[tid][l][i]);
}
}
max_sum_times[l][i] = max;
double avg = sum / nthreads_per_socket_for_gemm / nsockets;
load_imbalance[l][i] = max / avg;
} else {
int nthreads_for_i = i >= WGT_UPDATE
? nthreads_per_socket_for_allreduce[nthreads_per_socket] * nsockets
: nthreads;
for (int tid = 0; tid < nthreads; ++tid) {
sum += sum_times[tid][l][i];
max = std::max(max, sum_times[tid][l][i]);
}
max_sum_times[l][i] = max;
double avg = sum / nthreads_for_i;
load_imbalance[l][i] = max / avg;
}
}
} // for each layer
// Report timing
double total_times[NUM_BREAKDOWNS] = {0}, total_flops[NUM_BREAKDOWNS] = {0};
for (int l = 0; l < nlayers; ++l) {
printf(
"[layer %d] fwd %g ms/iter (%g GF/s/core) imbalance %g, "
"wgt_grad %g ms/iter (%g GF/s/core) imbalance %g, "
"bwd %g ms/iter (%g GF/s/core) imbalance %g, "
"wgt_update %g ms/iter (%g GB/s/socket) imbalance %g, "
"wgt_update_reduce_scatter %g ms/iter (%g GB/s/socket) imbalance %g, "
"wgt_update_allgather %g ms/iter (%g GB/s/socket) imbalance %g\n",
l,
max_sum_times[l][FWD] / NITER * 1e3,
sum_flops[l][FWD] / max_sum_times[l][FWD] / nthreads / 1e9,
load_imbalance[l][FWD],
max_sum_times[l][WGT_GRAD] / NITER * 1e3,
sum_flops[l][WGT_GRAD] / max_sum_times[l][WGT_GRAD] / nthreads / 1e9,
load_imbalance[l][WGT_GRAD],
max_sum_times[l][BWD] / NITER * 1e3,
sum_flops[l][BWD] / max_sum_times[l][BWD] / nthreads / 1e9,
load_imbalance[l][BWD],
max_sum_times[l][WGT_UPDATE] / NITER * 1e3,
sum_flops[l][WGT_UPDATE] / max_sum_times[l][WGT_UPDATE] / nsockets /
1e9,
load_imbalance[l][WGT_UPDATE],
max_sum_times[l][WGT_UPDATE_REDUCE_SCATTER] / NITER * 1e3,
sum_flops[l][WGT_UPDATE_REDUCE_SCATTER] /
max_sum_times[l][WGT_UPDATE_REDUCE_SCATTER] / nsockets / 1e9,
load_imbalance[l][WGT_UPDATE_REDUCE_SCATTER],
max_sum_times[l][WGT_UPDATE_ALLGATHER] / NITER * 1e3,
sum_flops[l][WGT_UPDATE_ALLGATHER] /
max_sum_times[l][WGT_UPDATE_ALLGATHER] / nsockets / 1e9,
load_imbalance[l][WGT_UPDATE_ALLGATHER]);
for (int i = FWD; i < NUM_BREAKDOWNS; ++i) {
total_times[i] += max_sum_times[l][i];
total_flops[i] += sum_flops[l][i];
}
} // for each layer
printf(
"total fwd %g ms/iter (%g GF/s/core), "
"wgt_grad %g ms/iter (%g GF/s/core), "
"bwd %g ms/iter (%g GF/s/core), "
"wgt_update %g ms/iter (%g GB/s/socket), "
"wgt_update_reduce_scatter %g ms/iter (%g GB/s/socket), "
"wgt_update_allgather %g ms/iter (%g GB/s/socket)\n",
total_times[FWD] / NITER * 1e3,
total_flops[FWD] / total_times[FWD] / nthreads / 1e9,
total_times[WGT_GRAD] / NITER * 1e3,
total_flops[WGT_GRAD] / total_times[WGT_GRAD] / nthreads / 1e9,
total_times[BWD] / NITER * 1e3,
total_flops[BWD] / total_times[BWD] / nthreads / 1e9,
total_times[WGT_UPDATE] / NITER * 1e3,
total_flops[WGT_UPDATE] / total_times[WGT_UPDATE] / nsockets / 1e9,
total_times[WGT_UPDATE_REDUCE_SCATTER] / NITER * 1e3,
total_flops[WGT_UPDATE_REDUCE_SCATTER] /
total_times[WGT_UPDATE_REDUCE_SCATTER] / nsockets / 1e9,
total_times[WGT_UPDATE_ALLGATHER] / NITER * 1e3,
total_flops[WGT_UPDATE_ALLGATHER] / total_times[WGT_UPDATE_ALLGATHER] /
nsockets / 1e9);
printf("wall clock time %g ms/iter\n", wall_clock_time / NITER * 1e3);
}
void print_checksum() {
for (int l = 0; l < nlayers; ++l) {
double l1_norm = 0, l2_norm = 0, trace = 0;
for (int i = 0; i < nfeatures[l + 1]; ++i) {
for (int j = 0; j < nfeatures[l]; ++j) {
float w = (*weights[l])(i, j);
l1_norm += std::abs(w);
l2_norm += w * w;
}
if (i < std::min(nfeatures[l + 1], nfeatures[l])) {
trace += (*weights[l])(i, i);
}
}
l2_norm = sqrt(l2_norm);
printf("layer %d l1 %g l2 %g trace %g\n", l, l1_norm, l2_norm, trace);
}
}
void get_my_ring_info(
int sid,
int task,
int* idx_in_ring,
int* prev_sid,
int* next_sid) {
int ring_to_use = task % rings.size();
*idx_in_ring =
std::find(rings[ring_to_use].begin(), rings[ring_to_use].end(), sid) -
rings[ring_to_use].begin();
*prev_sid = rings[ring_to_use][(*idx_in_ring - 1 + nsockets) % nsockets];
*next_sid = rings[ring_to_use][(*idx_in_ring + 1) % nsockets];
if (nsockets < 8) {
*idx_in_ring = sid;
*prev_sid = (sid - 1 + nsockets) % nsockets;
*next_sid = (sid + 1) % nsockets;
if (ring_to_use) {
swap(*prev_sid, *next_sid);
}
}
}