forked from huboqiang/healthman
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
332 lines (262 loc) · 14.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"""
utils for helping data analysis and plotting.
"""
import pickle
import warnings
import pandas as pd
import numpy as np
from scipy import stats
warnings.filterwarnings("ignore")
def parse_default_num(x: str) -> np.float32:
if x is None:
return np.nan
l_val = x.split(";")
l_res = []
for val in l_val:
val = "".join(val.split("<"))
val = "".join(val.split(">"))
val = "".join(val.split("+"))
val = ".".join(val.split(".."))
val = "".join(val.split("已复核"))
val = "".join(val.split("复查"))
val = "".join(val.split("已复"))
l_res.append(val)
try:
x_new = np.nanmean([float(x) for x in l_res])
return x_new
except:
# print("\t",x)
return np.nan
def _parse_age_groups(age):
if age < 30:
return "<30"
if age < 45:
return "30-45"
if age < 60:
return "45-60"
return ">60"
def parse_dict_with_default(val, default_dict=None):
if default_dict is None:
default_dict = {}
if val in default_dict:
return default_dict[val]
return val
def _parse_period(line, na_val=pd.NA):
month = line["month"]
year = line["year"]
if (year == 2023 and month < 7) or(year == 2022 and month >= 11):
return "Test-2023"
if (year == 2022 and month < 7) or(year == 2021 and month >= 11):
return "Control-2022"
if (year == 2021 and month < 7) or(year == 2020 and month >= 11):
return "Control-2021"
if isinstance(na_val, str):
return f"{na_val}-{year}"
return na_val
def extend_table1plus_data(infile):
df_table1plus = pd.read_csv(infile, index_col=[0])
df_table1plus["age"] = df_table1plus.apply(
lambda x: int(x["year"])-int(x["birthday"].split("-")[0]), axis=1
)
df_table1plus_q4q1 = df_table1plus.copy()
df_table1plus_q4q1["date_column"] = df_table1plus_q4q1.apply(
lambda x: pd.Timestamp(f"{x['year']:04d}-{x['month']:02d}-{x['day']:02d}"), axis=1
)
start_date0 = pd.Timestamp('2020-11-01')
end_date0 = pd.Timestamp('2021-06-30')
start_date1 = pd.Timestamp('2021-11-01')
end_date1 = pd.Timestamp('2022-06-30')
start_date2 = pd.Timestamp('2022-11-01')
end_date2 = pd.Timestamp('2023-06-30')
df_p0 = df_table1plus_q4q1[(df_table1plus_q4q1['date_column'] >= start_date0) &
(df_table1plus_q4q1['date_column'] <= end_date0)]
df_p0["period"] = df_p0["gender"].apply(lambda x: f"20-21_{x}")
df_p1 = df_table1plus_q4q1[(df_table1plus_q4q1['date_column'] >= start_date1) &
(df_table1plus_q4q1['date_column'] <= end_date1)]
df_p1["period"] = df_p1["gender"].apply(lambda x: f"21-22_{x}")
df_p2 = df_table1plus_q4q1[(df_table1plus_q4q1['date_column'] >= start_date2) &
(df_table1plus_q4q1['date_column'] <= end_date2)]
df_p2["period"] = df_p2["gender"].apply(lambda x: f"22-23_{x}")
df_p = pd.concat([df_p0, df_p1, df_p2])
df_p_pvt = df_p.pivot_table(index="sample_id", values="period", aggfunc=lambda x: len(set(x)))
l_consecute_man2p = list(df_p_pvt[df_p_pvt["period"]>1].index)
l_consecute_man3p = list(df_p_pvt[df_p_pvt["period"]>2].index)
return parse_man_info(df_table1plus), l_consecute_man2p, l_consecute_man3p
def parse_man_info(df_input, na_val=pd.NA):
df = df_input.copy()
df["age"] = df.apply(lambda x: int(x["year"])-int(x["birthday"].split("-")[0]), axis=1)
df["year-month"] = [ f"{x:04d}-{y:02d}" for x,y in zip(df["year"], df["month"])]
df["age_groups"] = df["age"].apply(_parse_age_groups)
if sum(df.columns.isin(["period"])) == 0:
df["period"] = df.apply(lambda x: _parse_period(x, na_val), axis=1)
df["gender"] = df["gender"].apply(
lambda x: parse_dict_with_default(x, default_dict={1:"male", 2:"female"})
)
df = df[~df["period"].isna()]
df["period_age"] = df.apply(lambda x: f"{x['period']}_{x['age_groups']}", axis=1)
return df
def _period_month_to_year(x):
year = int(x["period"].split("-")[1])
if x["month"] > 6:
year -= 1
return year
def _get_df_3periods(df_table1plus, l_consecute_man3p, main_period, l_col_all, l_col_cat, l_cols):
df_tmp = df_table1plus[df_table1plus["sample_id"].isin(l_consecute_man3p) &
df_table1plus["period"].isin([main_period])].\
pivot_table(index="sample_id", values="month", aggfunc=np.min).reset_index()
month_dict = { k:v for k,v in zip(df_tmp["sample_id"], df_tmp["month"]) }
df_table1plus_3periods = df_table1plus[
df_table1plus["sample_id"].isin(l_consecute_man3p)].copy()
df_table1plus_3periods['month'] = [ month_dict[x] for x in df_table1plus_3periods['sample_id'] ]
df_table1plus_3periods["year"] = df_table1plus_3periods.apply(
_period_month_to_year, axis=1
)
df_table1plus_3periods_pvt = pd.melt(df_table1plus_3periods[l_cols + l_col_all],
id_vars=l_cols).\
pivot_table(index=l_cols, columns="variable", values="value",
aggfunc=np.nanmean).reset_index()
return parse_man_info(df_table1plus_3periods_pvt)
# def update_liuzhong_health_check_data(
# file_data="/cluster/home/bqhu_jh/projects/healthman/analysis/tableOnePlusData-final.csv",
# file_meta="/cluster/home/bqhu_jh/projects/healthman/analysis/feature_groups_en_v3.csv"
# ):
# df_table1plus, l_consecute_man2p, l_consecute_man3p = extend_table1plus_data(file_data)
# kwargs = {
# "l_col_all" : list(df_table1plus.columns[6:-5]),
# "l_col_cat" : list(df_table1plus.columns[-24:-5]),
# "l_cols" : ["gender", "sample_id", "period", "month", "birthday"]
# }
# df_table1plus.loc[
# df_table1plus["sample_id"]=="Mzi4RtCk8Er3epHz17cxM8ytDzhxZ9ZxW1K5NNZKUwt3ug==", "birthday"
# ] = "1977-05-27"
# df_table1plus_3p_rev_month = _get_df_3periods(df_table1plus, l_consecute_man3p,
# main_period="Test-2023", **kwargs)
# df_meta_group = pd.read_csv(file_meta)
# df_meta_group.index = df_meta_group["item_id"]
# rename_dict = df_meta_group["item_name_en"].to_dict()
# output_dir = "/cluster/home/bqhu_jh/projects/healthman/analysis"
# dict_obj = {
# "rename_dict" : rename_dict,
# "l_consecute_man2p" : l_consecute_man2p,
# "l_consecute_man3p" : l_consecute_man3p
# }
# with open(f"{output_dir}/man_info.pickle", "wb") as f_out:
# pickle.dump(dict_obj, f_out)
# df_table1plus.to_parquet(f"{output_dir}/tableOnePlusData-final.parquet")
# df_table1plus_3p_rev_month.to_parquet(f"{output_dir}/tableOnePlusData-final_3p.parquet")
# df_meta_group.to_parquet(f"{output_dir}/feature_groups_en_v3.parquet")
# return df_table1plus, l_consecute_man2p, l_consecute_man3p, df_table1plus_3p_rev_month,\
# df_meta_group, rename_dict
def quick_load_liuzhong_health_check_data(output_dir = "/cluster/home/bqhu_jh/projects/healthman/analysis"):
df_table1plus = pd.read_parquet(f"{output_dir}/tableOnePlusData-final.parquet")
df_meta_group = pd.read_parquet(f"{output_dir}/feature_groups_en_v3.parquet")
df_table1plus_3p_rev_month = pd.read_parquet(f"{output_dir}/tableOnePlusData-final_3p.parquet")
with open(f"{output_dir}/man_info.pickle", "rb") as f:
dict_man = pickle.load(file=f)
l_consecute_man2p = dict_man["l_consecute_man2p"]
l_consecute_man3p = dict_man["l_consecute_man3p"]
rename_dict = dict_man["rename_dict"]
return df_table1plus, l_consecute_man2p, l_consecute_man3p, df_table1plus_3p_rev_month,\
df_meta_group, rename_dict
def _get_consecute_3p(df_table1plus_final):
df_main_q4q1 = pd.melt(df_table1plus_final,
id_vars=["sample_id", "year", "month", "day", "gender"]).\
pivot_table(index=["sample_id", "year", "month", "day", "gender"],
columns="variable", values="value"
).reset_index()
df_main_q4q1["date_column"] = df_main_q4q1.apply(
lambda x: pd.Timestamp(f"{x['year']:04d}-{x['month']:02d}-{x['day']:02d}"), axis=1
)
### 测试用例:+5Or4aEsNrAnrlX7vIZ9PMytDz1xZdZxW1e4MNVNUAl3vg==
start_date0 = pd.Timestamp('2020-11-01')
end_date0 = pd.Timestamp('2021-10-31')
start_date1 = pd.Timestamp('2021-11-01')
end_date1 = pd.Timestamp('2022-10-31')
start_date2 = pd.Timestamp('2022-11-01')
end_date2 = pd.Timestamp('2023-06-30')
df_p0 = df_main_q4q1[(df_main_q4q1['date_column'] >= start_date0) &
(df_main_q4q1['date_column'] <= end_date0)]
df_p0["period"] = df_p0["gender"].apply(lambda x: f"20-21_{x}")
df_p1 = df_main_q4q1[(df_main_q4q1['date_column'] >= start_date1) &
(df_main_q4q1['date_column'] <= end_date1)]
df_p1["period"] = df_p1["gender"].apply(lambda x: f"21-22_{x}")
df_p2 = df_main_q4q1[(df_main_q4q1['date_column'] >= start_date2) &
(df_main_q4q1['date_column'] <= end_date2)]
df_p2["period"] = df_p2["gender"].apply(lambda x: f"22-23_{x}")
df_p = pd.concat([df_p0, df_p1, df_p2])
df_p_pvt = df_p.pivot_table(index="sample_id", values="period", aggfunc=lambda x: len(set(x)))
l_consecute_man3p = list(df_p_pvt[df_p_pvt["period"]>2].index)
l_consecute_man2p = list(df_p_pvt[df_p_pvt["period"]>1].index)
return l_consecute_man3p, l_consecute_man2p
def _get_rev_month_3periods(df_table1plus_final, l_consecute_man3p, kwargs):
df_table1plus_3p_rev_month = _get_df_3periods(df_table1plus_final, l_consecute_man3p,
main_period="Test-2023", **kwargs)
df_cnt = df_table1plus_3p_rev_month["sample_id"].value_counts().reset_index()
l_debug = list(df_cnt[df_cnt["count"]==3]["sample_id"])
df_table1plus_3p_rev_month = df_table1plus_3p_rev_month[
df_table1plus_3p_rev_month["sample_id"].isin(l_debug)][
kwargs["l_cols"]+kwargs["l_col_all"]
].reset_index().drop(["index"], axis=1)
return parse_man_info(df_table1plus_3p_rev_month)
def get_3periods(df_table1plus_final, l_high_lighted, l_text_columns):
kwargs = {
"l_col_all" : l_high_lighted,
"l_col_cat" : l_text_columns,
"l_cols" : ["birthday", "year", "month", "period", "gender", "sample_id"]
}
l_consecute_man3p_tmp,l_consecute_man2p = _get_consecute_3p(
df_table1plus_final[["sample_id", "year", "month", "day", "gender"]+l_high_lighted]
)
# fix data error to confirm "same people"
df_table1plus_final.loc[
df_table1plus_final["sample_id"]=="Mzi4RtCk8Er3epHz17cxM8ytDzhxZ9ZxW1K5NNZKUwt3ug==", "birthday"
] = "1977-05-27"
df_table1plus_3p_rev_month = _get_rev_month_3periods(
df_table1plus_final, l_consecute_man3p_tmp, kwargs
)
l_consecute_man3p = list(set(df_table1plus_3p_rev_month["sample_id"]))
df_table1plus_3p_rev_month = df_table1plus_3p_rev_month[
df_table1plus_3p_rev_month["sample_id"].isin(l_consecute_man3p)
].sort_values(["gender", "sample_id"])
df_table1plus_3p_rev_month.loc[:, l_text_columns] = df_table1plus_3p_rev_month[l_text_columns].applymap(
lambda x: 1 if x> 0 else 0
)
return df_table1plus_3p_rev_month, l_consecute_man2p, l_consecute_man3p
def _get_fc_pvalue_tag(tag, m_beg=1, m_end=6, l_months=None, df_meta_group=None, df_table1plus=None):
if df_meta_group is None or df_table1plus is None:
df_table1plus, l_consecute_man2p, l_consecute_man3p, df_table1plus_3p_revMM, df_meta_group, rename_dict =\
quick_load_liuzhong_health_check_data()
hue = "period"
hue_t = "Test-2023"
hue_c1 = "Control-2022"
hue_c2 = "Control-2021"
month = 1
print(df_meta_group.loc[tag]["item_name_en"])
if m_beg == -1 or m_end == -1:
df_p_plot = df_table1plus[[tag, "month", hue]].dropna()
subset_t = df_p_plot[(df_p_plot[hue] == hue_t) ][tag].dropna()
subset_c1 = df_p_plot[(df_p_plot[hue] == hue_c1)][tag].dropna()
subset_c2 = df_p_plot[(df_p_plot[hue] == hue_c2)][tag].dropna()
pval = stats.ttest_ind(subset_t.values, subset_c1.values).pvalue
print(f"All, 2023 vs 2022, fold change {subset_t.mean() / subset_c1.mean():.2f}, p={pval:.2e}, n={len(subset_t)}, {len(subset_c1)}")
pval = stats.ttest_ind(subset_c1.values, subset_c2.values).pvalue
print(f"All, 2022 vs 2021, fold change {subset_c1.mean() / subset_c2.mean():.2f}, p={pval:.2e}, n={len(subset_c1)}, {len(subset_c2)}")
if l_months is not None:
df_p_plot = df_table1plus[[tag, "month", hue]].dropna()
subset_t = df_p_plot[(df_p_plot[hue] == hue_t) & (df_p_plot["month"].isin(l_months))][tag].dropna()
subset_c1 = df_p_plot[(df_p_plot[hue] == hue_c1) & (df_p_plot["month"].isin(l_months))][tag].dropna()
subset_c2 = df_p_plot[(df_p_plot[hue] == hue_c2) & (df_p_plot["month"].isin(l_months))][tag].dropna()
pval = stats.ttest_ind(subset_t.values, subset_c1.values).pvalue
print(f"month {l_months}, 2023 vs 2022, fold change {subset_t.mean() / subset_c1.mean():.2f}, p={pval:.2e}, n={len(subset_t)}, {len(subset_c1)}")
pval = stats.ttest_ind(subset_c1.values, subset_c2.values).pvalue
print(f"month {l_months}, 2022 vs 2021, fold change {subset_c1.mean() / subset_c2.mean():.2f}, p={pval:.2e}, n={len(subset_c1)}, {len(subset_c2)}")
return
for month in range(m_beg, m_end):
df_p_plot = df_table1plus[[tag, "month", hue]].dropna()
subset_t = df_p_plot[(df_p_plot[hue] == hue_t) & (df_p_plot["month"] == month)][tag].dropna()
subset_c1 = df_p_plot[(df_p_plot[hue] == hue_c1) & (df_p_plot["month"] == month)][tag].dropna()
subset_c2 = df_p_plot[(df_p_plot[hue] == hue_c2) & (df_p_plot["month"] == month)][tag].dropna()
pval = stats.ttest_ind(subset_t.values, subset_c1.values).pvalue
print(f"month {month}, 2023 vs 2022, fold change {subset_t.mean() / subset_c1.mean():.2f}, p={pval:.2e}, n={len(subset_t)}, {len(subset_c1)}")
pval = stats.ttest_ind(subset_c1.values, subset_c2.values).pvalue
print(f"month {month}, 2022 vs 2021, fold change {subset_c1.mean() / subset_c2.mean():.2f}, p={pval:.2e}, n={len(subset_c1)}, {len(subset_c2)}")