-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlAItus.py
87 lines (53 loc) · 2.49 KB
/
PlAItus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
'''
██████╗ ██╗ █████╗ ██╗ ████████╗██╗ ██╗ ██████╗
██╔══██╗██║ ██╔══██╗ ██║ ╚══██╔══╝██║ ██║██╔════╝
██████╔╝██║ ███████║ ██║ ██║ ██║ ██║╚█████╗
██╔═══╝ ██║ ██╔══██║ ██║ ██║ ██║ ██║ ╚═══██
██║ ███████╗ ██║ ██║ ██╗ ██║ ██╗ ██║ ╚██████╔╝██████╔╝
╚═╝ ╚══════╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═════╝
PlA.I.tus (play-tus) is a nerual network created to automate
trading for stocks and crypto. The name PlA.I.tus was derived
from the greek god Plutus, the god of wealth.
Developer: Jaden Alberding
'''
import numpy as np
import pandas as pd
import FileControl as fc
def get_test_data(input1, input2):
ans = open(str(input1), "r")
t_data = open(str(input2), "r")
x = []
y = []
for line1,line2 in zip(ans,t_data):
temp1 =[]
temp2 = []
line1 = line1.replace("\n", "")
line1 = line1.replace("[", "")
line1 = line1.replace("]", "")
line2 = line2.replace("\n", "")
line2 = line2.replace("[", "")
line2 = line2.replace("]", "")
line1 = line1.split(",")
line2 = line2.split(",")
for i in line1:
temp1.append(int(i))
for j in line2:
temp2.append(int(j))
x.append(temp1)
y.append(temp2)
return x,y
def main():
x_data, y_data = get_test_data("TestData/TrainAns.txt","TestData/TrainData.txt")
x_data = np.array(x_data).T
y_data = np.array(y_data).T
print(x_data)
print(y_data)
if __name__ == "__main__":
main()
'''
Add to README later vvvvv
Information on creating the neural network was self taught.
Source of information:
Samson Zhang, "Building a neural network FROM SCRATCH (no Tensorflow/Pytorch, just numpy & math)",https://www.youtube.com/watch?v=w8yWXqWQYmU&t=496s
Jason Brownlee "How to Choose an Activation Function for Deep Learning", https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
'''