-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathreward.py
122 lines (103 loc) · 5.21 KB
/
reward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import math
from model import generator as generator_class
from typing import List, Tuple
from string import Template
def format_prompt(chains: List[str], step_num: int, eval_prompt: str, prompt_style: str) -> str:
if prompt_style in ["struct", "struct_min", "cot_step"]:
return chains.strip() + eval_prompt.substitute(step=step_num)
else:
return chains.strip() + eval_prompt
def batch_evaluate(generator: generator_class,
prompt_style: str,
batch_chains: List[List[str]],
positive_token_id: int, negative_token_id: int,
substep_num: int,
step_nums: List[int],
reward_types: str = "both") -> Tuple[List[float], int]:
batch_prompt_state = ["".join(chains) for chains in batch_chains]
b = len(batch_prompt_state)
if prompt_style in ["struct", "struct_min"]:
helpfulness = Template(
"\n\n# Let us pause for a moment and evaluate the last subproblem (in STEP $step) before we proceed further.\n" \
"# Question: Is solving the last subproblem (in STEP $step) helpful in making a progress towards solving the main problem?\n" \
"# (A) Yes.\n# (B) No.\n# Answer: (")
correctness = Template(
"\n\n# Let us pause for a moment and evaluate the last solution (in STEP $step) before we proceed further.\n" \
"# Question: Is the last solution (in STEP $step) correct?\n" \
"# (A) Yes.\n# (B) No.\n# Answer: (")
if substep_num == 0:
eval_prompts = [helpfulness]
else:
eval_prompts = [correctness]
batch_prompt_states = [batch_prompt_state]
else:
if prompt_style == "cot_step":
helpfulness = Template(
"\n\n# Let us pause for a moment and evaluate the last step (Step $step) before we proceed further.\n" \
"# Question: Is the last step (Step $step) helpful?\n" \
"# (A) Yes.\n# (B) No.\n# Answer: (")
correctness = Template(
"\n\n# Let us pause for a moment and evaluate the last step (Step $step) before we proceed further.\n" \
"# Question: Is the last step (Step $step) correct?\n" \
"# (A) Yes.\n# (B) No.\n# Answer: (")
else:
helpfulness = "\n\n# Let us pause for a moment and evaluate the last step before we proceed further.\n" \
"# Question: Is the last step helpful?\n" \
"# (A) Yes.\n# (B) No.\n# Answer: ("
correctness = "\n\n# Let us pause for a moment and evaluate the last step before we proceed further.\n" \
"# Question: Is the last step correct?\n" \
"# (A) Yes.\n# (B) No.\n# Answer: ("
# batch_prompt_states = [batch_prompt_state]
# eval_prompts = [correctness]
if "both" in reward_types:
eval_prompts = [helpfulness, correctness]
batch_prompt_states = [batch_prompt_state, batch_prompt_state]
elif "helpfulness" in reward_types:
eval_prompts = [helpfulness]
batch_prompt_states = [batch_prompt_state]
elif "correctness" in reward_types:
eval_prompts = [correctness]
batch_prompt_states = [batch_prompt_state]
else:
raise ValueError("Invalid Reward Types")
full_batch_prompt_states = []
for eval_prompt, batch_prompt_state in zip(eval_prompts, batch_prompt_states):
full_batch_prompt_states += [format_prompt(chains, step_num, eval_prompt, prompt_style) \
for step_num, chains in zip(step_nums, batch_prompt_state)]
# print("full_batch_prompt_states: ")
batch_outputs = generator.generate(prompt=full_batch_prompt_states,
max_length=1,
num_samples=1,
logprobs=1000,
stop=[],
temperature=0)
prompt2pred = {}
for output in batch_outputs:
prompt2pred[output.prompt] = output.outputs
rewards = []
# print("eval_prompts: ", prompts)
for id, prompt in enumerate(full_batch_prompt_states):
sample = prompt2pred[prompt][0]
logprobs = sample.logprobs[0]
pos_prob = 0
neg_prob = 0
if negative_token_id in logprobs:
neg_prob = math.exp(logprobs[negative_token_id])
if positive_token_id in logprobs:
pos_prob = math.exp(logprobs[positive_token_id])
pos_prob = 0 if pos_prob == 0 else pos_prob / (pos_prob + neg_prob)
if pos_prob == 0:
reward = -99999
else:
reward = math.log(pos_prob)
#print("Reward Prompt: ", full_batch_prompt_states[id])
#print("Gen: ", sample.text)
#print("Pos prob: ", pos_prob)
rewards.append(reward)
sum_rewards = []
num_eval_prompts = len(eval_prompts)
for i in range(b):
sum_reward = sum([rewards[i + (j * b)] for j in range(len(eval_prompts))])
sum_rewards.append(sum_reward)
assert len(sum_rewards) == b
return sum_rewards, num_eval_prompts