-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlayer.py
276 lines (227 loc) · 10.1 KB
/
layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from fast_weight import fast_weight_delta, stateful_fast_weight_delta
from self_ref_v0 import self_ref_v0, stateful_self_ref_v0
from self_ref_v3 import self_ref_v3, stateful_self_ref_v3
@torch.jit.script
def elu_p1(x):
return F.elu(x, 1., False) + 1.
@torch.jit.script
def sum_norm(x):
return x / x.sum(-1, keepdim=True)
# A block of residual feed-forward layers in Transformer
class TransformerFFlayers(nn.Module):
def __init__(self, ff_dim, res_dim, dropout, use_layernorm=True,
use_res=True):
super(TransformerFFlayers, self).__init__()
self.res_dim = res_dim
self.ff_dim = ff_dim
self.dropout = dropout
self.use_layernorm = use_layernorm
self.use_res = use_res
self.ff_layers = nn.Sequential(
nn.Linear(res_dim, ff_dim), nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Linear(ff_dim, res_dim),
nn.Dropout(dropout),
)
if use_layernorm:
self.layer_norm = nn.LayerNorm(res_dim)
def forward(self, x):
out = self.layer_norm(x) if self.use_layernorm else x
if self.use_res:
out = self.ff_layers(out) + x
else:
out = self.ff_layers(out)
return out
# Fast weight layer with feed-forward fast net
class FastFFlayer(nn.Module):
def __init__(self, num_head, dim_head, in_dim, dropout, stateful=False,
single_state_training=False):
super(FastFFlayer, self).__init__()
self.num_head = num_head
self.dim_head = dim_head
self.in_dim = in_dim
self.stateful = stateful
self.single_state_training = single_state_training
if stateful:
self.fw_layer = stateful_fast_weight_delta
else:
self.fw_layer = fast_weight_delta
self.slow_net = nn.Linear(
in_dim, num_head * (3 * dim_head + 1), bias=False)
self.layer_norm = nn.LayerNorm(in_dim)
self.out_linear = nn.Linear(num_head * dim_head, in_dim, bias=False)
self.drop = nn.Dropout(dropout)
def forward(self, x, state=None, get_state=False):
# x shape: (len, B, n_head * d_head)
slen, bsz, _ = x.size()
out = self.layer_norm(x)
qkvb = self.slow_net(out)
qkvb = qkvb.view(slen, bsz, self.num_head, 3 * self.dim_head + 1)
head_q, head_k, head_v, head_beta = torch.split(
qkvb, (self.dim_head,) * 3 + (1,), -1)
head_beta = torch.sigmoid(head_beta)
# reshape to (B, heads, len, dim)
head_q = head_q.permute(1, 2, 0, 3)
head_k = head_k.permute(1, 2, 0, 3)
head_v = head_v.permute(1, 2, 0, 3)
head_beta = head_beta.permute(1, 2, 0, 3)
head_q = elu_p1(head_q)
head_k = elu_p1(head_k)
# normalize k and q, crucial for stable training.
head_k = sum_norm(head_k)
head_q = sum_norm(head_q)
if state is None:
fast_weights = torch.zeros(
bsz, self.num_head, self.dim_head, self.dim_head,
device=head_k.device)
else:
fast_weights = state
if self.stateful:
out, fast_weights = self.fw_layer(head_q, head_k, head_v, head_beta, fast_weights)
else:
out = self.fw_layer(head_q, head_k, head_v, head_beta, fast_weights)
out = out.transpose(1, 2)
out = out.reshape(bsz, slen, self.num_head * self.dim_head)
out = out.transpose(0, 1)
# expect [qlen, B, n_head * d_head]
# linear projection
out = self.out_linear(out)
out = self.drop(out)
out = x + out
if get_state:
assert fast_weights is not None
if self.single_state_training:
fast_weights = fast_weights.detach()[0].clone().unsqueeze(0).repeat(bsz, 1, 1, 1)
return out, fast_weights
return out, fast_weights.detach().clone()
else:
return out
# self referential weight matrix layer
class SRWMlayer(nn.Module):
def __init__(self, num_head, dim_head, in_dim, dropout, use_ln=True,
use_input_softmax=False, beta_init=-1.0, use_res=True, stateful=False,
init_scaler=1., q_init_scaler=0.01, unif_init=False,
single_state_training=False, no_softmax_on_y=False):
super(SRWMlayer, self).__init__()
self.num_head = num_head
self.dim_head = dim_head
self.in_dim = in_dim
self.use_ln = use_ln
self.use_res = use_res
self.use_input_softmax = use_input_softmax
self.no_softmax_on_y = no_softmax_on_y
if no_softmax_on_y:
assert use_input_softmax, '`no_softmax_on_y` is True but not `use_input_softmax`'
self.stateful = stateful
self.single_state_training = single_state_training
if no_softmax_on_y:
if stateful:
self.sr_layer = stateful_self_ref_v3
else:
self.sr_layer = self_ref_v3
self.y_lnorm = nn.LayerNorm(dim_head)
else:
if stateful:
self.sr_layer = stateful_self_ref_v0
else:
self.sr_layer = self_ref_v0
n_head = num_head
d_head = dim_head
self.W_y = nn.Parameter(torch.Tensor(1, n_head, d_head, d_head),
requires_grad=True)
self.W_q = nn.Parameter(torch.Tensor(1, n_head, d_head, d_head),
requires_grad=True)
self.W_k = nn.Parameter(torch.Tensor(1, n_head, d_head, d_head),
requires_grad=True)
self.w_b = nn.Parameter(torch.Tensor(1, n_head, d_head, 4),
requires_grad=True)
if use_ln:
self.layer_norm = nn.LayerNorm(in_dim)
self.out_linear = nn.Linear(num_head * dim_head, in_dim, bias=False)
self.drop = nn.Dropout(dropout)
if unif_init:
self.reset_parameters_unif(init_scaler, q_init_scaler)
else:
self.reset_parameters(beta_init, init_scaler, q_init_scaler)
def reset_parameters(self, beta_init, init_scaler, q_init_scaler=0.01):
std = init_scaler / math.sqrt(self.dim_head)
# std = 0.1 / math.sqrt(self.dim_head)
std_q = q_init_scaler / math.sqrt(self.dim_head)
nn.init.normal_(self.W_y, mean=0., std=std)
# nn.init.normal_(self.W_q, mean=0., std=std)
nn.init.normal_(self.W_q, mean=0., std=std_q)
nn.init.normal_(self.W_k, mean=0., std=std)
# tried -1 for beta but 0 seems to be better
# nn.init.normal_(self.w_b, mean=-5., std=std)
nn.init.normal_(self.w_b, mean=beta_init, std=std)
def reset_parameters_unif(self, init_scaler, q_init_scaler=0.01):
# beta_init not used
nn.init.uniform_(self.W_y, a=-init_scaler, b=init_scaler)
nn.init.uniform_(self.W_q, a=-q_init_scaler, b=q_init_scaler)
nn.init.uniform_(self.W_k, a=-init_scaler, b=init_scaler)
nn.init.uniform_(self.w_b, a=-init_scaler, b=init_scaler)
def forward(self, h, state=None, get_state=False):
# x shape: (len, B, n_head * d_head)
slen, bsz, _ = h.size()
x = h.reshape(slen, bsz, self.num_head, self.dim_head)
if self.use_input_softmax:
if self.no_softmax_on_y:
x = F.softmax(x, dim=-1)
input_to_y = x.clone()
else:
x = F.softmax(x, dim=-1)
# reshape to (B, heads, len, dim)
x = x.permute(1, 2, 0, 3)
if state is not None: # state stores the shift from the base weights.
W_y_bc, W_q_bc, W_k_bc, w_b_bc = state
W_y_bc = W_y_bc + self.W_y.clone().repeat(bsz, 1, 1, 1)
W_q_bc = W_q_bc + self.W_q.clone().repeat(bsz, 1, 1, 1)
W_k_bc = W_k_bc + self.W_k.clone().repeat(bsz, 1, 1, 1)
w_b_bc = w_b_bc + self.w_b.clone().repeat(bsz, 1, 1, 1)
else:
W_y_bc = self.W_y.clone().repeat(bsz, 1, 1, 1)
W_q_bc = self.W_q.clone().repeat(bsz, 1, 1, 1)
W_k_bc = self.W_k.clone().repeat(bsz, 1, 1, 1)
w_b_bc = self.w_b.clone().repeat(bsz, 1, 1, 1)
if self.no_softmax_on_y:
if self.stateful:
out, W_y_bc, W_q_bc, W_k_bc, w_b_bc = self.sr_layer(x, input_to_y, W_y_bc, W_q_bc, W_k_bc, w_b_bc)
else:
out = self.sr_layer(x, input_to_y, W_y_bc, W_q_bc, W_k_bc, w_b_bc)
out = self.y_lnorm(out)
else:
if self.stateful:
out, W_y_bc, W_q_bc, W_k_bc, w_b_bc = self.sr_layer(x, W_y_bc, W_q_bc, W_k_bc, w_b_bc)
else:
out = self.sr_layer(x, W_y_bc, W_q_bc, W_k_bc, w_b_bc)
out = out.transpose(1, 2)
out = out.reshape(bsz, slen, self.num_head * self.dim_head)
out = out.transpose(0, 1)
# expect [qlen, B, n_head * d_head]
# linear projection
out = self.out_linear(out)
out = self.drop(out)
if self.use_ln:
if self.use_res:
out = self.layer_norm(h) + out
else:
if self.use_res:
out = h + out
if get_state:
if self.single_state_training: # take only batch one.
W_y_bc = (W_y_bc[0].unsqueeze(0) - self.W_y.detach().clone()).repeat(bsz, 1, 1, 1)
W_q_bc = (W_q_bc[0].unsqueeze(0) - self.W_q.detach().clone()).repeat(bsz, 1, 1, 1)
W_k_bc = (W_k_bc[0].unsqueeze(0) - self.W_k.detach().clone()).repeat(bsz, 1, 1, 1)
w_b_bc = (w_b_bc[0].unsqueeze(0) - self.w_b.detach().clone()).repeat(bsz, 1, 1, 1)
else:
W_y_bc = W_y_bc - self.W_y.detach().clone().repeat(bsz, 1, 1, 1)
W_q_bc = W_q_bc - self.W_q.detach().clone().repeat(bsz, 1, 1, 1)
W_k_bc = W_k_bc - self.W_k.detach().clone().repeat(bsz, 1, 1, 1)
w_b_bc = w_b_bc - self.w_b.detach().clone().repeat(bsz, 1, 1, 1)
state = (W_y_bc, W_q_bc, W_k_bc, w_b_bc)
return out, state
return out