-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcirccentlikl.m
83 lines (71 loc) · 1.94 KB
/
circcentlikl.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
% Computes the accumulator image for a
% Wavelet-Based Circular Hough Transform, given a particular radius
%
% REFERENCE
% Marcelo C., Davi G., and Kris G.
% Wavelet-Based Circular Hough Transform
% and its Application in Embryo Development Analysis.
% VISAPP, Barcelona, 2013. BibTeX:
% @proceedings{Cicconet2013,
% editor = {Sebastiano Battiato and
% Jos{\'e} Braz},
% title = {VISAPP 2013 - Proceedings of the International Conference
% on Computer Vision Theory and Applications, Volume 1, Barcelona,
% Spain, 21-24 February, 2013},
% booktitle = {VISAPP (1)},
% publisher = {SciTePress},
% year = {2013},
% isbn = {978-989-8565-47-1}
% }
%
% USAGE
% A = circcentlikl(G,rad,sc,nor)
%
% RETURNS
% A: the accumulator image (in the range [0,1])
%
% PARAMETERS
% G: gradient image (see example below)
% rad: radius of circles we're looking for (should be integer)
% sc: scale of the wavelet filter to be used;
% this parameter should be approximately
% the the size of the edges of the circles in the image
% nor: number of orientations of the wavelet to be used;
% typical values are 8 and 16
%
% VERSION
% 1.0, Mar 21 2013
%
% AUTHOR
% Marcelo Cicconet
% marceloc.net
function A = circcentlikl(I,rad,sc,nor)
[nr,nc] = size(I);
rrs = zeros(2,nor);
crs = zeros(2,nor);
rr1 = rad+1;
rr2 = nr-rad;
cr1 = rad+1;
cr2 = nc-rad;
S = zeros(rr2-rr1+1,cr2-cr1+1);
for or = 1:nor
ang = (or-1)/nor*2*pi;
rrs(1,or) = rr1+round(rad*cos(ang));
rrs(2,or) = rr2+round(rad*cos(ang));
crs(1,or) = cr1+round(rad*sin(ang));
crs(2,or) = cr2+round(rad*sin(ang));
end
for or = 1:nor
J = I(rrs(1,or):rrs(2,or),...
crs(1,or):crs(2,or));
ang = (or-1)/nor*360;
[~,mi] = smorlet(1,sc,ang,1);
% R = conv2(J,mr,'same');
Z = conv2(J,mi,'same');
S = S+Z.*(Z > 0);
% S = sqrt(R.^2+Z.^2);
end
A = zeros(nr,nc);
S = (S/max(max(S))).^2;
A(rr1:rr2,cr1:cr2) = S;
end