-
Notifications
You must be signed in to change notification settings - Fork 3
/
run_qm9.py
333 lines (283 loc) · 12.1 KB
/
run_qm9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import os.path as osp
import os, sys
from shutil import copy, rmtree
import pdb
import argparse
import random
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
import data_processing as dp
from distance import Distance # custom Distance for original_edge_attr and multiple_h
from utils import create_subgraphs, create_subgraphs2
from qm9_models import *
# The units provided by PyG QM9 are not consistent with their original units.
# Below are meta data for unit conversion of each target task. We do unit conversion
# in order to compare with previous work (k-GNN in particular).
HAR2EV = 27.2113825435
KCALMOL2EV = 0.04336414
conversion = torch.tensor([
1., 1., HAR2EV, HAR2EV, HAR2EV, 1., HAR2EV, HAR2EV, HAR2EV, HAR2EV, HAR2EV,
1., KCALMOL2EV, KCALMOL2EV, KCALMOL2EV, KCALMOL2EV, 1., 1., 1.
])
class MyTransform(object):
def __init__(self, pre_convert=False):
self.pre_convert = pre_convert
def __call__(self, data):
data.y = data.y[:, int(args.target)] # Specify target: 0 = mu for example
if self.pre_convert: # convert back to original units
data.y = data.y / conversion[int(args.target)]
return data
# General settings.
parser = argparse.ArgumentParser(description='I2GNNs for QM9 graphs')
parser.add_argument('--target', default=0, type=int) # 0 for detection of tri-cycle, 3,4,...,8 for counting of cycles
parser.add_argument('--convert', type=str, default='post',
help='if "post", convert units after optimization; if "pre", \
convert units before optimization')
# Base GNN settings.
parser.add_argument('--model', type=str, default='GNN')
parser.add_argument('--layers', type=int, default=5)
# Nested GNN settings
parser.add_argument('--h', type=int, default=None, help='hop of enclosing subgraph;\
if None, will not use NestedGNN')
parser.add_argument('--max_nodes_per_hop', type=int, default=None)
parser.add_argument('--node_label', type=str, default='hop',
help='apply distance encoding to nodes within each subgraph, use node\
labels as additional node features; support "hop", "drnl", "spd", \
for "spd", you can specify number of spd to keep by "spd3", "spd4", \
"spd5", etc. Default "spd"=="spd2".')
parser.add_argument('--use_rd', action='store_true', default=False,
help='use resistance distance as additional node labels')
parser.add_argument('--subgraph_pooling', default='mean', help='support mean and center\
for some models, default mean for most models')
parser.add_argument('--subgraph2_pooling', default='mean', help='support mean and center\
for some models, default mean for most models')
parser.add_argument('--graph_pooling', default='mean', help='support mean and center\
for some models, default mean for most models')
parser.add_argument('--use_pooling_nn', action='store_true', default=False)
# Training settings.
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--lr', type=float, default=1E-3)
parser.add_argument('--lr_decay_factor', type=float, default=0.9)
parser.add_argument('--patience', type=int, default=5)
# Other settings.
parser.add_argument('--squared_dist', action='store_true', default=False,
help='use squared node distance')
parser.add_argument('--not_normalize_dist', action='store_true', default=False,
help='do not normalize node distance by max distance of a molecule')
parser.add_argument('--use_max_dist', action='store_true', default=False,
help='use maximum distance between all nodes as a global feature')
parser.add_argument('--use_pos', action='store_true', default=False,
help='use node position (3D) as continuous node features')
parser.add_argument('--RNI', action='store_true', default=False,
help='use node randomly initialized node features in [-1, 1]')
parser.add_argument('--use_relative_pos', action='store_true', default=False,
help='use relative node position (3D) as continuous edge features')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--save_appendix', default='',
help='what to append to save-names when saving results')
parser.add_argument('--keep_old', action='store_true', default=False,
help='if True, do not overwrite old .py files in the result folder')
parser.add_argument('--dataset', default='qm9')
parser.add_argument('--load_model', default=None)
args = parser.parse_args()
# set random seed
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
# define dataloader (different for 3-WL)
from dataloader import DataLoader # use a custom dataloader to handle subgraphs
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if args.save_appendix == '':
args.save_appendix = '_' + time.strftime("%Y%m%d%H%M%S")
# args.res_dir = 'results/QM9_{}{}'.format(args.target, args.save_appendix)
args.res_dir = 'results/' + args.dataset + '_' + args.model + args.save_appendix
print('Results will be saved in ' + args.res_dir)
if not os.path.exists(args.res_dir):
os.makedirs(args.res_dir)
# Backup python files.
copy('run_qm9.py', args.res_dir)
copy('utils.py', args.res_dir)
copy('qm9_models.py', args.res_dir)
# Save command line input.
cmd_input = 'python ' + ' '.join(sys.argv) + '\n'
with open(os.path.join(args.res_dir, 'cmd_input.txt'), 'a') as f:
f.write(cmd_input)
print('Command line input: ' + cmd_input + ' is saved.')
target = int(args.target)
print('---- Target: {} ----'.format(target))
path = 'data/QM9'
subgraph_pretransform = None
pre_transform = None
if args.h is not None:
if type(args.h) == int:
path += '/ngnn_h' + str(args.h)
elif type(args.h) == list:
path += '/ngnn_h' + ''.join(str(h) for h in args.h)
path += '_' + args.node_label
if args.use_rd:
path += '_rd'
if args.max_nodes_per_hop is not None:
path += '_mnph{}'.format(args.max_nodes_per_hop)
def pre_transform(g):
return create_subgraphs(g, args.h,
max_nodes_per_hop=args.max_nodes_per_hop,
node_label=args.node_label,
use_rd=args.use_rd,
subgraph_pretransform=subgraph_pretransform)
def pre_transform2(g):
return create_subgraphs2(g, args.h,
max_nodes_per_hop=args.max_nodes_per_hop,
node_label=args.node_label,
use_rd=args.use_rd,
subgraph_pretransform=subgraph_pretransform)
pre_filter = None
if args.model == 'GNN':
processed_name = 'processed'
my_pre_transform = None
print('Loading from %s' % "processed")
elif args.model == 'NGNN':
processed_name = 'processed_n_h'+str(args.h)+"_"+args.node_label
my_pre_transform = pre_transform
elif args.model == 'I2GNN':
processed_name = 'processed_nn_h'+str(args.h)+"_"+args.node_label
my_pre_transform = pre_transform2
else:
print('Error: no such model!')
exit(1)
if args.use_rd:
processed_name = processed_name + '_rd'
dataset = dp.QM9(
'data/qm9',
processed_name,
transform=T.Compose(
[
MyTransform(args.convert=='pre'),
Distance(norm=args.not_normalize_dist==False,
relative_pos=args.use_relative_pos,
squared=args.squared_dist)
]
),
pre_transform=my_pre_transform,
pre_filter=pre_filter,
)
dataset = dataset.shuffle()
# Normalize targets to mean = 0 and std = 1. data leaking?
tenpercent = int(len(dataset) * 0.1)
mean = dataset.data.y[tenpercent:].mean(dim=0)
std = dataset.data.y[tenpercent:].std(dim=0)
dataset.data.y = (dataset.data.y - mean) / std
print('Mean = %.3f, Std = %.3f' % (mean[args.target], std[args.target]))
cont_feat_start_dim = 5
test_dataset = dataset[:tenpercent]
val_dataset = dataset[tenpercent:2 * tenpercent]
train_dataset = dataset[int(2 * tenpercent):]
test_loader = DataLoader(test_dataset, batch_size=args.batch_size)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
kwargs = {
'num_layers': args.layers,
'subgraph_pool': args.subgraph_pooling,
'subgraph2_pool': args.subgraph2_pooling,
'graph_pool': args.graph_pooling,
'use_pos': args.use_pos,
'edge_attr_dim': 8 if args.use_relative_pos else 5,
'use_max_dist': args.use_max_dist,
'use_rd': args.use_rd,
'RNI': args.RNI,
'target': args.target,
'use_pooling_nn': args.use_pooling_nn,
}
model = eval(args.model)(train_dataset, **kwargs)
if args.load_model != None:
cpt = torch.load(args.load_model)
model.load_state_dict(cpt)
print('Using ' + model.__class__.__name__ + ' model')
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min',factor=args.lr_decay_factor, patience=args.patience, min_lr=0.00001)
def train(epoch):
model.train()
loss_all = 0
for t, data in enumerate(train_loader):
if type(data) == dict:
data = {key: data_.to(device) for key, data_ in data.items()}
num_graphs = data[args.h[0]].num_graphs
else:
data = data.to(device)
num_graphs = data.num_graphs
optimizer.zero_grad()
y = data.y
y = y.view([y.size(0), 1])
Loss = torch.nn.MSELoss()
loss = Loss(model(data), y)
loss.backward()
loss_all += loss * num_graphs
optimizer.step()
return loss_all / len(train_loader.dataset)
def test(loader):
model.eval()
with torch.no_grad():
model.eval()
error = 0
for data in loader:
if type(data) == dict:
data = {key: data_.to(device) for key, data_ in data.items()}
else:
data = data.to(device)
y = data.y
y_hat = model(data)[:, 0]
error += torch.sum(torch.abs(y_hat - y))
num = len(loader.dataset)
return error / num * std[args.target]
def loop(start=1, best_val_error=None):
pbar = tqdm(range(start, args.epochs+start))
count = 0
for epoch in pbar:
pbar.set_description('Epoch: {:03d}'.format(epoch))
lr = scheduler.optimizer.param_groups[0]['lr']
loss = train(epoch)
val_error = test(val_loader)
scheduler.step(val_error)
count += 1
if best_val_error is None:
best_val_error = val_error
if val_error <= best_val_error or count == 10:
count = 0
test_error = test(test_loader)
best_val_error = val_error
log = (
'Epoch: {:03d}, LR: {:7f}, Loss: {:.7f}, Validation MAE: {:.7f}, ' +
'Test MAE: {:.7f}, Test MAE norm: {:.7f}, Test MAE convert: {:.7f}'
).format(
epoch, lr, loss, val_error,
test_error,
test_error / std[target].cuda(),
test_error / conversion[int(args.target)].cuda() if args.convert == 'post' else 0
)
print('\n'+log+'\n')
with open(os.path.join(args.res_dir, 'log.txt'), 'a') as f:
f.write(log + '\n')
model_name = os.path.join(args.res_dir, 'model_checkpoint{}.pth'.format(epoch))
torch.save(model.state_dict(), model_name)
start = epoch + 1
return start, best_val_error, log
best_val_error = None
start = 1
start, best_val_error, log = loop(start, best_val_error)
print(cmd_input[:-1])
print(log)
# uncomment the below to keep training even reaching epochs
'''
while True:
start, best_val_error, log = loop(start, best_val_error)
print(cmd_input[:-1])
print(log)
pdb.set_trace()
'''