-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2.phase.rest_function.R
executable file
·227 lines (222 loc) · 15.7 KB
/
2.phase.rest_function.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env Rscript
#==========================================================================================
#title: 2.phase.rest_function.R
#description: phases and haplotypes individuals after G1 using phase and haplotypes from G1
#author: jmontero
#email: jose.a.montero-tena@ab.uni-giessen.de
#date: 2023-02-21
#version: 1.0.0
#notes: can be executed from 0.haplomagic.R
# border filtering applied
#==========================================================================================
PhaseRest = function(pop, chr, min, imp, cor) {
# Import relevant files
pedDF = read.table(paste0(pop, "_", chr, ".pedigree"), sep = " ", header = TRUE, colClasses = "character")
genMatrix = as.matrix(read.table(paste0(pop, "_", chr, ".genotype"), sep = " ", header = FALSE, colClasses = "character", row.names = 1))
phaseMatrix = as.matrix(read.table(paste0(pop, "_", chr, ".phase"), sep = " ", header = FALSE, colClasses = "character", row.names = 1))
haploMatrix = as.matrix(read.table(paste0(pop, "_", chr, ".haplo"), sep = " ", header = FALSE, colClasses = "character", row.names = 1))
nSnp = ncol(phaseMatrix) # Shortcut to number of SNPs
# Start by creating the haplotype origin matrix
originMatrix = matrix(nrow = 0, ncol = nSnp) # Final matrix with imputed filtered haploblocks
originMatrix.noFilt.noImp = originMatrix # Non-imputed non-filtered haploblocks for statistics
originMatrix.noFilt = originMatrix # Non-filtered haploblocks for statistics
for (gen in unique(pedDF$gen[!pedDF$gen %in% c('G0', 'G1')])) {
ids = pedDF[pedDF$gen == gen, "id"]
originMatrixTMP = matrix(nrow = 0, ncol = nSnp) ; phaseMatrixTMP = originMatrixTMP ; originMatrix.noFilt.noImpTMP = originMatrixTMP ; originMatrix.noFiltTMP = originMatrixTMP
rowNames = c()
for (id in ids) {
# 1. Extract the id's genotype
Igen = genMatrix[id, ]
# 2. Extract the parents names
sire = pedDF[pedDF$id == id, "sire"]
dam = pedDF[pedDF$id == id, "dam"]
# 3. Use the parents' names to extract their paternal and maternal phases
FPphase = phaseMatrix[paste0(sire, "_P"), ]
FMphase = phaseMatrix[paste0(sire, "_M"), ]
MPphase = phaseMatrix[paste0(dam, "_P"), ]
MMphase = phaseMatrix[paste0(dam, "_M"), ]
# 4. PHASING
# 4.1 Get the unphased child's alleles
allele1 = Igen[seq(1, length(Igen), 2)] ; allele2 = Igen[seq(2, length(Igen), 2)]
# 4.2 Define phasing scenarios
noMissingData = allele1 != 0 & allele2 != 0 & FPphase != 0 & FMphase != 0 & MPphase != 0 & MMphase != 0
noMendelianError = ((allele1 == FPphase | allele1 == FMphase) & (allele2 == MPphase | allele2 == MMphase)) | ((allele2 == FPphase | allele2 == FMphase) & (allele1 == MPphase | allele1 == MMphase)) # FIXED 23.03.14
noTripleHet = !(allele1 != allele2 & FPphase != FMphase & MPphase != MMphase) # Triple heterozygous: Non-phaseable scenario in which all trio individuals are het
homozygousID = allele1 == allele2
homozygousFather = FPphase == FMphase
homozygousMother = MPphase == MMphase
# 4.3 Iterate over the ind phase to fill up the phase following the phasing scenarios
IPphase = ifelse(noMissingData & noMendelianError,
ifelse(homozygousID,
allele1,
ifelse(homozygousFather, # If the mother is hom the father phase can be resolved
FPphase,
ifelse(homozygousMother,
ifelse(allele1 == MPphase,
allele2,
allele1),
"0"))),
"0")
IMphase = ifelse(noMissingData & noMendelianError,
ifelse(homozygousID,
allele1,
ifelse(homozygousMother, # If the mother is hom the father phase can be resolved
MPphase,
ifelse(homozygousFather,
ifelse(allele1 == FPphase,
allele2,
allele1),
"0"))),
"0")
# 5. HAPLOTYPING
UnknownChildPaternalAllele = IPphase == "0" ; UnknownChildMaternalAllele = IMphase == 0
IPorigin = ifelse(noMissingData & noMendelianError,
ifelse(homozygousFather | UnknownChildPaternalAllele,
"*",
ifelse(IPphase == FPphase,
"P",
"M")),
ifelse(!noMissingData,
"?",
"!"))
IMorigin = ifelse(noMissingData & noMendelianError,
ifelse(homozygousMother | UnknownChildMaternalAllele,
"*",
ifelse(IMphase == MPphase,
"P",
"M")),
ifelse(!noMissingData,
"?",
"!"))
# 6. HAPLOTYPE IMPUTATION
Iorigin = list(IPorigin, IMorigin) ; Iphase = list(IPphase, IMphase) ; Fphase = list(FPphase, MPphase) ; Mphase = list(FMphase, MMphase)
# For homozygous parents, avoid blank origin files by adding a random P
for (i in seq(1, 2, 1)) {
if (length(which(Iorigin[[i]] %in% c("P", "M"))) == 0) {
Iorigin[[i]][1] = "P"
}
}
for (i in seq(1, 2, 1)) {
# Add the non-filtered non-imputed sequence to respective matrix
originMatrix.noFilt.noImpTMP = rbind(originMatrix.noFilt.noImpTMP, Iorigin[[i]])
# 6.1 1ST haplotype imputation round: impute non assigned alleles if they do not lie within RE gaps. ALSO save the indexes of the informative alleles
wildcardIndex = which(Iorigin[[i]] == "*" | Iorigin[[i]] == "!" | Iorigin[[i]] == "?")
informativeIndex = which(Iorigin[[i]] != "*" & Iorigin[[i]] != "!" & Iorigin[[i]] != "?") # This will be used to validate haploblocks based on the number of inf. alleles
gaps = split(wildcardIndex, cumsum(c(1, diff(wildcardIndex) != 1)))
if (length(gaps[[1]]) != 0 ) {
for (gap in gaps) {
Iorigin[[i]][seq(gap[1], gap[length(gap)], 1)] = ifelse(gap[1] == 1,
Iorigin[[i]][gap[length(gap)] + 1],
ifelse(gap[length(gap)] == nSnp,
Iorigin[[i]][gap[1] - 1],
ifelse(Iorigin[[i]][gap[1] - 1] == Iorigin[[i]][gap[length(gap)] + 1],
Iorigin[[i]][gap[length(gap)] + 1],
"*")))
}
} else {
Iorigin[[i]] = Iorigin[[i]] # If there is no haplotype to impute
}
originMatrix.noFiltTMP = rbind(originMatrix.noFiltTMP, Iorigin[[i]])
# 6.2 2ND haplotype imputation round: filter out haplotypes with no more than the minimum number of informative alleles (FILTERING)
haplotypeIndexP = which(Iorigin[[i]] == "P") # This will be used to validate haploblocks based on the number of inf. alleles
haplotypeIndexM = which(Iorigin[[i]] == "M")
haploblocks = append(split(haplotypeIndexP, cumsum(c(1, diff(haplotypeIndexP) != 1))), split(haplotypeIndexM, cumsum(c(1, diff(haplotypeIndexM) != 1))))
if (length(haploblocks[[1]]) != 0 ) {
for (haploblock in haploblocks) {
if (length(haploblock) != 0) {
Iorigin[[i]][seq(haploblock[1], haploblock[length(haploblock)], 1)] = ifelse(length(informativeIndex[informativeIndex >= haploblock[1] & informativeIndex <= haploblock[length(haploblock)]]) < min,
"*",
Iorigin[[i]][seq(haploblock[1], haploblock[length(haploblock)], 1)])
}
}
}
# 6.3 3RD haplotype imputation round: Repetition of the 1st round to impute the filtered haplotypes
wildcardIndex = which(Iorigin[[i]] == "*" | Iorigin[[i]] == "!" | Iorigin[[i]] == "?")
informativeIndex = which(Iorigin[[i]] != "*" & Iorigin[[i]] != "!" & Iorigin[[i]] != "?") # This will be used to validate haploblocks based on the number of inf. alleles
gaps = split(wildcardIndex, cumsum(c(1, diff(wildcardIndex) != 1)))
if (length(gaps[[1]]) != 0 & length(wildcardIndex) != length(Iorigin[[i]])) {
for (gap in gaps) {
Iorigin[[i]][seq(gap[1], gap[length(gap)], 1)] = ifelse(gap[1] == 1,
Iorigin[[i]][gap[length(gap)] + 1],
ifelse(gap[length(gap)] == nSnp,
Iorigin[[i]][gap[1] - 1],
ifelse(Iorigin[[i]][gap[1] - 1] == Iorigin[[i]][gap[length(gap)] + 1],
Iorigin[[i]][gap[length(gap)] + 1],
"*")))
}
} else {
Iorigin[[i]] = Iorigin[[i]] # If there is no haplotype to impute
}
# 6. Add the id haplotype to the haplotype origin matrix
originMatrixTMP = rbind(originMatrixTMP, Iorigin[[i]])
# 7.1 PHASE IMPUTATION
# Depending on the selected imputation method, TH, MD and ME will be imputed
wildcardIndex = which(Iphase[[i]] == "0")
if (length(wildcardIndex) != 0) {
if (imp == "imputeNot") {
Iphase[[i]][wildcardIndex] = "0"
} else if (imp == "imputeTHonly") {
Iphase[[i]][wildcardIndex] = ifelse(noTripleHet[wildcardIndex] == FALSE,
ifelse(Iorigin[[i]][wildcardIndex] == "P",
Fphase[[i]][wildcardIndex],
ifelse(Iorigin[[i]][wildcardIndex] == "M",
Mphase[[i]][wildcardIndex],
"0")),
"0")
} else if (imp == "imputeAll") {
Iphase[[i]][wildcardIndex] = ifelse(Iorigin[[i]][wildcardIndex] == "P",
Fphase[[i]][wildcardIndex],
ifelse(Iorigin[[i]][wildcardIndex] == "M",
Mphase[[i]][wildcardIndex],
"0"))
}
} else {
Iphase[[i]] = Iphase[[i]]
}
phaseMatrixTMP = rbind(phaseMatrixTMP, Iphase[[i]])
}
rowNames = append(rowNames, paste0(id, c("_P", "_M")))
if (imp != "imputeNot" || cor != "correctNot") {
# 7.2. PHASE CORRECTION FOR TRIPLE HETEROZYGOUS
# Triple Het phases must be always heterozygous, despite imputation returning homozygous phases. We can also use the information of assigned alleles to assign 0s
if (cor == "reImpute" || cor == "correctAll") {
wildcardIndexP = which(phaseMatrixTMP[nrow(phaseMatrixTMP)-1, ] == 0)
phaseMatrixTMP[nrow(phaseMatrixTMP)-1, wildcardIndexP] = ifelse(!noTripleHet[wildcardIndexP],
ifelse(phaseMatrixTMP[nrow(phaseMatrixTMP), wildcardIndexP] == "1",
"2",
ifelse(phaseMatrixTMP[nrow(phaseMatrixTMP), wildcardIndexP] == "2",
"1",
"0")),
"0")
wildcardIndexM = which(phaseMatrixTMP[nrow(phaseMatrixTMP), ] == "0")
phaseMatrixTMP[nrow(phaseMatrixTMP), wildcardIndexM] = ifelse(!noTripleHet[wildcardIndexM],
ifelse(phaseMatrixTMP[nrow(phaseMatrixTMP)-1, wildcardIndexM] == "1",
"0",
ifelse(phaseMatrixTMP[nrow(phaseMatrixTMP)-1, wildcardIndexM] == "2",
"1",
"0")),
"0") # For ME and MD, we will keep 0 if they lie within RE gaps to avoid phasing errors
}
if (cor == "correctFalseHom" || cor == "correctAll") {
tripleHet = which(noTripleHet == FALSE)
phaseMatrixTMPcopy = phaseMatrixTMP
phaseMatrixTMP[nrow(phaseMatrixTMP)-1, tripleHet] = ifelse(phaseMatrixTMPcopy[nrow(phaseMatrixTMPcopy)-1, tripleHet] == phaseMatrixTMPcopy[nrow(phaseMatrixTMPcopy), tripleHet], # If pat and mat allele are hom in TH, 0
"0",
phaseMatrixTMP[nrow(phaseMatrixTMP)-1, tripleHet])
phaseMatrixTMP[nrow(phaseMatrixTMP), tripleHet] = ifelse(phaseMatrixTMPcopy[nrow(phaseMatrixTMPcopy)-1, tripleHet] == phaseMatrixTMPcopy[nrow(phaseMatrixTMPcopy), tripleHet], # If pat and mat allele are hom in TH, 0
"0",
phaseMatrixTMP[nrow(phaseMatrixTMP), tripleHet])
}
}
}
rownames(originMatrixTMP) = rowNames ; rownames(phaseMatrixTMP) = rowNames ; rownames(originMatrix.noFilt.noImpTMP) = rowNames ; rownames(originMatrix.noFiltTMP) = rowNames
originMatrix = rbind(originMatrix, originMatrixTMP)
phaseMatrix = rbind(phaseMatrix, phaseMatrixTMP)
originMatrix.noFilt.noImp = rbind(originMatrix.noFilt.noImp, originMatrix.noFilt.noImpTMP)
originMatrix.noFilt = rbind(originMatrix.noFilt, originMatrix.noFiltTMP)
}
write.table(phaseMatrix, paste0(pop, "_", chr, ".phase"), sep = " ", row.names = TRUE, quote = FALSE, col.names = FALSE)
write.table(originMatrix, paste0(pop, "_", chr, ".f.i.origin"), sep = " ", row.names = TRUE, quote = FALSE, col.names = FALSE)
write.table(originMatrix.noFilt.noImp, paste0(pop, "_", chr, ".nf.ni.origin"), sep = " ", row.names = TRUE, quote = FALSE, col.names = FALSE)
write.table(originMatrix.noFilt, paste0(pop, "_", chr, ".nf.i.origin"), sep = " ", row.names = TRUE, quote = FALSE, col.names = FALSE)
}