-
Notifications
You must be signed in to change notification settings - Fork 5
/
test_MGDIP_RTTS.py
106 lines (82 loc) · 3.65 KB
/
test_MGDIP_RTTS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from torch.utils.data import DataLoader
import utils.gpu as gpu
from model.yolov3_multi_gdip_top_to_bottom import Yolov3MultiGDIP
from tqdm import tqdm
from utils.tools import *
from eval.evaluator_RTTS_GDIP import Evaluator
import argparse
import os
import config.yolov3_config_RTTS as cfg
from utils.visualize import *
from tqdm import tqdm
# import os
# os.environ["CUDA_VISIBLE_DEVICES"]='0'
class Tester(object):
def __init__(self,
weight_path=None,
gpu_id=0,
img_size=544,
visiual=None,
eval=False
):
self.img_size = img_size
self.__num_class = cfg.DATA["NUM"]
self.__conf_threshold = cfg.TEST["CONF_THRESH"]
self.__nms_threshold = cfg.TEST["NMS_THRESH"]
self.__device = gpu.select_device(gpu_id)
self.__multi_scale_test = cfg.TEST["MULTI_SCALE_TEST"]
self.__flip_test = cfg.TEST["FLIP_TEST"]
self.__visiual = visiual
self.__eval = eval
self.__classes = cfg.DATA["CLASSES"]
self.__model = Yolov3MultiGDIP(cfg).to(self.__device)
self.__load_model_weights(weight_path)
self.__evalter = Evaluator(self.__model, visiual=False)
def __load_model_weights(self, weight_path):
print("loading weight file from : {}".format(weight_path))
weight = os.path.join(weight_path)
chkpt = torch.load(weight, map_location=self.__device)
self.__model.load_state_dict(chkpt)
# self.__model.load_state_dict(chkpt['model'])
print("loading weight file is done")
del chkpt
def test(self):
# if self.__visiual:
# imgs = os.listdir(self.__visiual)
# for v in tqdm(imgs):
# path = os.path.join(self.__visiual, v)
# # print("test images : {}".format(path))
# img = cv2.imread(path)
# img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
# assert img is not None
# bboxes_prd = self.__evalter.get_bbox(img)
# if bboxes_prd.shape[0] != 0:
# boxes = bboxes_prd[..., :4]
# class_inds = bboxes_prd[..., 5].astype(np.int32)
# scores = bboxes_prd[..., 4]
# visualize_boxes(image=img, boxes=boxes, labels=class_inds, probs=scores, class_labels=self.__classes)
# path = os.path.join(cfg.PROJECT_PATH, "data/{}".format(v))
# img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
# cv2.imwrite(path, img)
# # print("saved images : {}".format(path))
if self.__eval:
mAP = 0
print('*' * 20 + "Validate" + '*' * 20)
with torch.no_grad():
APs = Evaluator(self.__model).APs_voc(self.__multi_scale_test, self.__flip_test,direct_flag=False)
for i in APs:
print("{} --> mAP : {}".format(i, APs[i]))
mAP += APs[i]
mAP = mAP / self.__num_class
print('mAP:%g' % (mAP))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--weight_path', type=str, default='best.pt', help='weight file path')
parser.add_argument('--visiual', type=str, default='', help='test data path or None')
parser.add_argument('--eval', action='store_true', default=True, help='eval the mAP or not')
parser.add_argument('--gpu_id', type=int, default=0, help='gpu id')
opt = parser.parse_args()
Tester( weight_path=opt.weight_path,
gpu_id=opt.gpu_id,
eval=opt.eval,
visiual=opt.visiual).test()