-
Notifications
You must be signed in to change notification settings - Fork 0
/
bisección y newton raphson_raíz cúbica de 5.nb
1221 lines (1090 loc) · 41.5 KB
/
bisección y newton raphson_raíz cúbica de 5.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 42314, 1212]
NotebookOptionsPosition[ 37394, 1032]
NotebookOutlinePosition[ 37766, 1048]
CellTagsIndexPosition[ 37723, 1045]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{"f", "[", "x_", "]"}], ":=",
RowBox[{
SuperscriptBox["x", "3"], "-", "5"}]}]], "Input",
CellChangeTimes->{{3.680816815562645*^9, 3.680816836258829*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"f", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "3"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6808168482015123`*^9, 3.680816860804233*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwd1nk0Vd/7B3CFrpQMp6SEEJGo/FwaPdvQoJIhRZkVPqmQpI/hE8mY+UYy
hkwhIiTjCTdTKUkISZQoXMM1ZLi/fb9nrbPOeq3zxzn7/ez97C1p42Rou5qD
g2MB3+zn/CnHJH0nZ3WO/10byQtrfIn3smcgOmmKxWIRZEoknA+TtYCLE9H/
My+/ZVR3oh0M5jxcYbvuXPLta7KO8No/a4lt9dbxfFanC9yj3l5gO+HGBqmm
RDcodyqZYXt+o1IMzdoD5kYEx9k+V6bLYyZ7B1ouHP7Bdvez0ioa0wcaXIe6
2Q70PnZ7rtMXPBivWthWNfi816zcD9x8r5WzPSRlN0omBsCpb7kZbNNmmE9k
vIMgpGZnGNsab/zN71vfB3pHhDPbjNhNmye0QiGk64Ee28lXMj6clQ2H6/8N
yrOdmbT1qBlXJCy5K7FWsO8EfE8NZ0ZC470d79k+55SzQv6MAhv9W3Fs7zZx
MZ3upIFZzAdztjk1DpbJND2Aozw/Rdn+Ir96k0l5NORb2LYvYxcKNd+4nxsD
cmdW7rEdtBjVWpn4ELRDrRTZthy6oDARFgu01kPvl9jjfScZJOn9CJ40wxW2
N5SODJ11jgOK6rbFRewfyYUaAdbxYPDGx4/tykD35DLDBODfJ8bNdrSzxuKo
ViK0K6R6/cXW1Gwr1pNNhoIscb0F7C0KcYK+mx/Drwe3n86z6xO8V+0iVwo4
/HRbmMP+4DL/IJSZAsHRO91nsQ/bm9XKOKaCjun+bCZ2linJqP6ZCg8s8ltm
2HlpB+lOdqYB32TQ+BT26P4/nvf1n4D579Njk+z8FPVzpJuegOe8Sj+DnZ+w
COV8eTrYSu5NGMd+xOtFnVDOAIPstMtj7DxZ/ZeCcjPgjMi8xB92nsNZZHli
JlQF814dwT7Wu27i7KYsMJiV/TvMzveDk9hYWBaoSf1w/8nO95Wah4R3NmiG
c58cxJ55lpBdNpcNgQca4gawrdJYnw2cn8Ilj5Gufmy1kIb/87POAYkHG3b0
Yqd5K9iIfckByc/Oe76w83eNiCw1zIUlvym5LuyfZsZjv7TywGdJ6Ec7O2+l
4Uxd2XyIUuJwb8Zu5up5ue5pPojuaCxuwOboaW1sUigAfTNaVz12qZYpM03k
Obwxj/5cjd2m1LG86uJziAhhFVRg/9mit8Y64TkI0dudyrClGJqbJcQLwXCH
eGoh9pGeSok7loUQm98gmI9t8kZVri+lENL5NOxzsMMTdx1IkC4CWYK3Jg37
7wkh083yL4BaUS9Mw96kEnrJzeEFyF6tTAvD3iux5lpH7gtYuWsgEIxtx1zw
eqBUDM7PysO9sT+mDiTzq5RAo4cJ31XssVDTLMdbJWA8wJtgi83zb0fBu9IS
GEVyFCt2PzjTRIYcKIU9xbzuRtg5f59/p8BLeDh6pOwQNv3Hrt92Pi+h+NFm
JSr2tw/p0/TXL4HZJu+thC2c9YjLT7sMJvItCrdj+571keU4+Qp207pPcmIn
qf9Vsgx5BS0ixyMWVwiyTN5VrfrtK8irLM+dxh5n2Z/w0isHdRnRq4PYF/P0
HOaNKmDzQsQ8iX0rtsnF+GEFyI0sT77EjvTV8iztrIC4ICDzsd+YqIW6XqyE
7OT07gRsZW6JfIZlFXzPpM/cxOa1GJ/85VADotL9LqLYbh1tC1NZNVB/SfGc
APbg6ZJVy0M1cMPp5Hpu7K9i1UFBe0hopz+ZG1vG9V/v/yjxKQlFPi9fVWHb
jQqV1Se9hsTqe2lG2NsyuSp1Kl+D8YvinGPYH61na1q/vAbB396++7HVu7sb
ujbXgveqR49FsYUbUzr/RNXCod6igP4l/P8ZSnMbA+qA2fWixhzby3r7Ylx6
Hbiu8o4/ja0sJsQSr6uDsaECOISdHM1cI89RDy3lzOHN2G73KoWPeNTD7mJm
ZusiQcpan1S1daSD9vXhmH3YvdsOHxwNpcMBHS7GNmxal6K6Uy4dpE0M+Xmw
V/QEj7n/osOnPyqJfX8J8rN617kwmzeQyjn/wx87cJvdrZLzDZDp9pDRvECQ
cgWFqqmuDTArpDVVhN2ssTwXSmuAuACH0njsDfbRHpdbG6CEl+F3BfthYa03
cawRrssiZS7szGMS929Qm+Bbnk6w4jxBnuh2OGV+tgkSrn0JE8QevVq6XudG
E+yyXNFjzhGkUpRuxPZnTfB4mr6uEru0xzP6/Y5m4PeoNjmGTXfuSlbc2AJr
V55ynpnF9eHcYbVFuQX2x6VXKmLzPHSS5NZvgfLak0p82Kcr1qT3hrTAo07L
gy1MgvzETX0awvkWBrI3j2lhD8VHvRiZegvpo0L/7pzB/Y1+sjGjrRWUp/tX
iicJUkT/YO3WqVZYDG7LDMTe3SNfGSH0HqYOaUxcwD4/yfPc/ex76NXgtVpm
EGS2WEOsbsd7yOY5UwrYshWpLzyufQCXrbN9heM4P0L8npRzG5wTjDHT+U2Q
Rt2bOMx92qCVk2rIj/01me+/2Mg2YES/6/k0SpDT8stu6wvbIH7Q+KkF9jbU
6zA72QbRtr1S10cI0vFavGHzzY/wb/SK2q1hgiTowlIut9vhtpWr4p5Bgiwa
+2URG9AOjF18L39/J0h94YqEyph22OqV15mFHW5vuYlS3A4yrLJecWwe3mye
REY7+KdIjlEGCHLpzIEJ+pVPMEtM9dO/4ry6TCu3mHVAXXdM+3g3Xv+rlBbU
r3aAQNzhlCRsyV0cqpc9OmC7duXCKWwLz/SC/EcdoJzDYZjVRZBdYmNpWh0d
4NdaEm7SSZDvbO4EXz/zGRwP0SbTP+F6/0k5/xp1gl/tFunBVvx/gvQ9Cgad
cEXzQrcHtp3qCE+MdSdwNFgsCWIL++yr+Me3E8INxQLV3+H+QdRKCNR3wp5U
ofTIFoJUOTj4y+J4F9SF7kkVacT7UaCM55JuN8hJVH8sJvF+lKdjZGfRDYeC
p0wOYFu1XVf84NgNhvHz6lU1BCkgWtr/JKIbOmR65OqqCdI5/5j2qbZu2C+Q
/k9DJZ6vHfZ88UZf4HnawyOFZQSZJ5XzWM20B0zRfXvKc9zflT07ja72gGqS
Ya17AZ7/Wqf5XTx7YOvKIbff+bgfXRq/k5fQAxr+I8NvnxHk1gxlC8neHuh8
xRwOzCXI4J0V29aZ90KRJif310w8/t1v475a9IEj5TYXTxJBFh9Oalt07IOU
VHP65USCXK3ruHaLdx+Mr5VuJxNwP74u4H72cR9Ir7xud4vH8z/fyKSxvw+f
Dx9afInF5499fcJFVl/B5FGztjeNICVUxx/42/SDGut7+pFAXN+ncSFhN/oh
fMDiQ0QArv+2o/difPpBPPnCuQF/PN85E10ykvvhmXaYg68f3q/adAzoX/qh
P3n/q8q7BLm91DDQV/4bqGv+TRX0wu8N8rVrU7+B61bWzYPOBGkQaFujQRuA
scqq527nCVIcLq/9J34AFGZeW9w/h/fbWZuz4WkDsNsicl+SEa6XndXwl6IB
EO9mapGGBFl91JTftX0ALrY1CSydweuTy8Ayc+N3eMtqnNQ5TpCUu4dZvLHf
4eZCFe9hNYKs8iDgU8IgkAF6tpc2EuTGy6xfTk8GoeS7XYU+QZDXdH/T1uUO
gmSQ6eEjQni9ba/7qVk+CL72tCpCAPdrukt4YdcgqNxVKi5dR5AHBT72hW8a
gim7b/KfVhPky4xIL52IIQjdq8h0YAjh8w9febXvD1i09lpkNgqRl2MyeDdZ
DYPUrEx1r7MQiQa8fqzYjoBL0EcGiyVIZkSkVCCd33CfU8d6h78gqULn3CZ8
bgzoF0tOnv8tQN69wmVobDwBLrsc9s0cESAVyrI1/k1gwM5LVWOf+PhJBZbj
4/DHk7BQvktER4+PdLrd81efNgXhwzI39P9bR554YS9qHjcN2z/uCqs7tZb0
yayVfZwwA+UL7bsFfq0hl5rr9oSFMiHorerhKlcuku/F0HJ91Cy8Ppaf9CFk
FWnzNrcp238OQkUUhG/LL9cIJ2n41LrOQ0pbXuzb3tkay31zizL/LsC8g8SJ
+j/jNWOzhreoDn8hMk7HT3P1txp+n9YX4c6LwEFozCjdz4QoUqRPzGUJth+/
usf14yAYK6/lumCzDL2mNl/lRKehyH4Lo89uBThYy67+dctg0Pq+e8NFFny2
rbW23suF5Nx2dR7cwYFEomnOSaVr0eTPJekHGRzILnIdS4ZXAJk5pzlpiK9C
4kr+78z2EojW05m0MXUVEokIuz79Thg5WH5rPiK6GnmUBP4RttqKJtX1x1Y9
WI2a999rMxIQR1oc+lOjGzlRwusL3v3Skkjti9SsfDgnWogstlBQlUbMGP/e
MEEu9PxWyfEomgy69EyvLJTGhdDZ/cffrZZDN/v+0AZ4udHGl96jJra7kO7E
Fn3TMG50vtfYanirImresnW9AmUN2t5ocKWE3INmH9+tirmzBqkSD5+LHdqH
xijuBjIcFMQ0qs+brlNGAUFaQ7zuFMTD4DlxU1MF1SVElcl6UpCmO0e2po4K
4ijoD9X8j4KEPVQ0CH0V5N7hSfW4S0El9rUSZeYq6JpUccBIMAXtiw2OFHBX
QQaVO+Qb4yko8YrNhaUCFbSNwe3oX0lBdxiyuqQ4FZlwGmmmVlOQBENx3UsZ
KooRThOuIinoaySTu2A3FW04ol4zU09Bnw+qFaUdpKJV990ELr+jIP6O2F+P
zlPRT+nhIs2vFLT96NUfZDgVSatRAy2+URD3VK5XSwwVWZ28Z+rxnYLqjZwM
OxOpqNtZgqvoJwWxyPFXUzlU9LbK+JzkBAXVdQ167m+gIp62DPkjkxTU0KXL
q9tKRUeHppdNpimIN060y6aDiqp5IzMj5yjoar+hMm2QihbFvnrkLVCQTPZM
de4oFe3ft1uvcZGCdEodQt5MUpGrtof00DIFSSq0xX6fp6JC48Y5Fgt/f6f2
EItFRf8P6xnc0A==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{0, 3}, {-5., 21.999998346938806`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.680816862201313*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"f", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6808168857376595`*^9, 3.680816893647112*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVjH0w1Hkcx5fW/ixr14qcKxONuq1MyS0Xqc9PoVWnBxHX6YG0jpOonYtc
JbUqJWYrsbUkDaopuc4xHvp9I05FF9VRGtXqxJ5Ya5+s3f2e++M9r3nNvObt
HncgfJ8ljUYLm9n/5KcesaLRlFAd1aHDmIOSFmplgRZKuC723O9q5qCyt2m+
Jy2VUNv5tNDfyEHs4MQEhpUS3N7JGCI9Bw27RD9h2SghO10XNajkoKutPnku
jkrgJQc1PfjIQZbOE47f8pRg3FseO7eVg7qbEzyEW5Rw7aGwhy7moNLvbcT5
lUrwyPqpIsDARqcK/fxVeiXMCd48kHyIjfgdd1c3CSbgQ+b8iHUKO+S0qjc7
tHQCtm4P6m/fbIfsEvPm2SsnQCrSVy5qYKHv+vS64vUqOCW7slzFZaGly2+5
n5OpwKF/2yaJ0Bb5Bg6V1n5RwS+apvm2j2zQwUt9u8uDJkF1w3g4kLBBbTei
RE8vT0K8Z3Nd5zYmkhfN7Y3+ZxLM2cK7HiXWaMWLS5m3V6lhjXdDibiHQFda
pCKf82qo8aCpw9gEWqaNrD45qIZGY25+nTcDFXC3r/Tz04CrcNVGdoQVYg7L
nXhnNRBZLvhVf5SOHmAPn7fvNXCbf8en4sIsJOqZrGrz0kLWYN5YZpUlShg6
vEt0RgtdO6viJJUWyENOxuUOaCHcoiajtJyG9EWFDW+W6SDgxX0uRGDKVFAW
MSrWQXsM1/3RNybKJchv3cpeHaTPCzibxp2m8IBT1r+L9EBXxR4s1ekp58ZK
c+xRPTTxJPqQ61oqJLy9m/tcD6N/H6f1x6qpiiXSoVMLp2BODcQXyieobsVv
obszp6CgP/ZYQ+MYNVsYbXHo2RRUuRVn2CpGqJwFDwyhCwxgP5buPZb3ibKX
SgU7DhlgT6Y2g/VmgIqfav/U3WIA5cX6EK/zryhFcVULy2UasnYcv/lkRQt1
WjNHk5U4DbRih9fuZ2UQKfFPrEfTgFL3S+WmZ+CvUKxY7GAEWpT/0rmyN6BY
/EFgEWcEt+Ec6cUyOTy7nVt2rd4I0c3182K+GoHWoUeb0pgm8CrfSMQEjcOX
vfdWM2NN0Hdzt3HQbhI+drw/Yl1nAuP4mtC6o1oYHZaxAgkz8OVnJJceTwFv
A/dDwC4zIOaYmic0QaaQa32wesbvUOuPp9DIoqTtx9jYDP6pbcFeSyzJz9Vb
fFMiMfS06HMeOtHJsPu9a4kKDFVXznfNVliRTxP+WHigEkMne2JLhMqKFMy/
bN1bheFxrUXBZYMVGXQh/HnFHQyGEUHg17YMMiC564eQGgzXNkaneXoySE9e
a6q4CUOyuo0tSmGQrOv3Sma9xLBBzs8omGSQuVF5J35+hcEhITh7eJpBWnOS
41++xlDSwxIE0gmSfmzxkvI+DPLfPzI1jgRp/PFm7doBDMsYeQn7fAly1Fna
eWJkpn/HlyRmEGTSX+nVIwoM7dNXk7pOEORwTpRk6+hMvxNo3rkE+UnjGO0+
jkG6OmavSUqQ717mDyI1BvrrXqasiSB3nEtp52kxkEKbLkYbQfatDbtVoMNw
5HNjWFoXQb6qsTmwxzDzb998WjBAkOGJI1s7pjGExLsG1g4R5Au3Dr6XCcMN
s2v9gnGC3NRX4VxkxiDx+XO0QEeQnfliA8YYnu9yf48xQf4HxkZzcQ==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{1., 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{1, 2}, {-3.999999938775509, 2.9999997551020448`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.680816895259204*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[",
RowBox[{"3", "/", "2"}], "]"}]], "Input",
CellChangeTimes->{{3.680816906828865*^9, 3.6808169115311346`*^9}}],
Cell[BoxData[
RowBox[{"-",
FractionBox["13", "8"]}]], "Output",
CellChangeTimes->{3.680816913476246*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{"-",
FractionBox["13", "8"]}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
RowBox[{"-", "1.625`"}]], "Output",
CellChangeTimes->{3.680816921403699*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox["3", "2"], "+", "2"}], "2"]], "Input",
CellChangeTimes->{{3.6808170345261693`*^9, 3.680817042457623*^9}}],
Cell[BoxData[
FractionBox["7", "4"]], "Output",
CellChangeTimes->{3.680817198053522*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.6808172003956566`*^9, 3.6808172030098057`*^9}}],
Cell[BoxData[
FractionBox["23", "64"]], "Output",
CellChangeTimes->{3.680817203850854*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
FractionBox["23", "64"], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["0.359375`"], "Output",
CellChangeTimes->{3.6808172066710157`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox["3", "2"], "+",
FractionBox["7", "4"]}], "2"]], "Input",
CellChangeTimes->{{3.6808173454849553`*^9, 3.6808173522053394`*^9}}],
Cell[BoxData[
FractionBox["13", "8"]], "Output",
CellChangeTimes->{3.6808173543894644`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.680817356119563*^9, 3.6808173578866644`*^9}}],
Cell[BoxData[
RowBox[{"-",
FractionBox["363", "512"]}]], "Output",
CellChangeTimes->{3.68081735903273*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{"-",
FractionBox["363", "512"]}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
RowBox[{"-", "0.708984375`"}]], "Output",
CellChangeTimes->{3.680817398680998*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox["13", "8"], "+",
FractionBox["7", "4"]}], "2"]], "Input",
CellChangeTimes->{{3.680817556001996*^9, 3.6808175599352207`*^9}}],
Cell[BoxData[
FractionBox["27", "16"]], "Output",
CellChangeTimes->{3.680817561264297*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.6808175649825096`*^9, 3.6808175685277123`*^9}}],
Cell[BoxData[
RowBox[{"-",
FractionBox["797", "4096"]}]], "Output",
CellChangeTimes->{3.680817569394762*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{"-",
FractionBox["797", "4096"]}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
RowBox[{"-", "0.194580078125`"}]], "Output",
CellChangeTimes->{3.680817667348365*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox["27", "16"]], "Input"],
Cell[BoxData[
FractionBox["27", "16"]], "Output",
CellChangeTimes->{3.680817837146076*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
FractionBox["27", "16"], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["1.6875`"], "Output",
CellChangeTimes->{3.6808178391241894`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NumberForm", "[",
RowBox[{"1.6875`", ",", "16"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
TagBox[
InterpretationBox["\<\"1.6875\"\>",
1.6875,
AutoDelete->True],
NumberForm[#, 16]& ]], "Output",
CellChangeTimes->{3.6808178410853024`*^9}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.680818835032634*^9, 3.6808188370007467`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
SubscriptBox["\[PartialD]", "x"],
RowBox[{"f", "[", "x", "]"}]}]], "Input",
CellChangeTimes->{{3.680818849638469*^9, 3.6808188518905983`*^9}}],
Cell[BoxData[
RowBox[{"3", " ",
SuperscriptBox["x", "2"]}]], "Output",
CellChangeTimes->{3.680818853196673*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"3", " ",
SuperscriptBox["x", "2"]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "8"}], ",", "8"}], "}"}]}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw1mGc4FX7ch491yC6yOUZ2qZCR8f0lCSUVSlZ1yInsRIQoCYmKkJnMUMko
Ib9TiKwyQ1b2KDsr4/k/1/U8rz5v73ef+7rFyK5nr9ASCIRdNATC/64C8Ext
b5Oo323EBra3KcjUUTp0bZ1EPX6QOuy1SkG+T9WkFv+SqKHtNryzcxRUO21B
HpsmUT0eJrIM/6KgS/GpPY0/SNTmul0y3VUU9HhepuHZGxK15Mrqga37FLSU
rpGvdJFENVR7fkd+JwWVMV12oVSKUEMQWZJL2h7dbuqc/nRZmFpWXBNXpWGH
JjP5eVWFhKhE4fFlgXtkJDegv4OjT4DqdEIgc3jyEsrgSl/qvsNPNQmyd2kJ
skFVlvUPMfBRj1YI+e97ZImEUoVE43/xUF/vs7ZMDDdHJ45a+rSF7ab+zj5c
21pphkj/7ANlDbipB2P4PsgYmqB9r5MDPf7som6dC+elbziNBj3TFDpzdlL1
FPeKJmoaIYekx+lJjpxU181hv+2jBsg84IJEvjg71elVtXa//jEkMy1raZrC
Qm2kazj5evAIunbq9L2hYSbqSZrtv8CshSyuG2upqBCpytIxaRdEVVE0njiN
39FR/Zul4IWqIgLarnMKNDRUT5JhZ5WgPBqTtpngXCFQ5Zq0Lz38J4cijUZ8
Fn8TqMoKyvyOP+VQf/xcUmkXgarJLMZnnSiHAvbvGNYpIFBZ5OgMZYXkUIXV
YdfzFwnUUqZJfwsxWeTpos5Bc2sb2+hoSIkelkaOXZ/dMhc38KestZtqmRLI
ue1y1Ye+DVyhsskWfF8CuTUTeJprN/BGmazsmIME8q7WLl9O3MAGzzfn/yhI
oOCCMgZ93Q3M0/+oiaVMHKWEFiZMxfzDd6Wu5Ae2i6E2tRfV+1XW8fOpaiZj
AVHUqXSEV1d0HZ8iNtd0bpFQj8KggznzOh4j2YVofiWhwT0iHEH9azifNWRv
lA0JzXAmXGgNWcMZjc9ZzzwQQUyTj2c8f6xixbGDQsf/CCHNZ0F8ZTdXcOft
zzc3WvmRkUVUnLLtCtZ1ci5/l86PbASTed4YreDDhBOOSZ786HZyKXeG+Aou
E0lhneLhR5/TZjkjG5exgEqGbaQ1Hzqea72DLLqMdZr3W/5b4EFny9XXd9Qt
YcMMXTd7bW5k63fcJ7hwCecH6apHcnMjTy2z1a2kJfyU6O3ya4oLPcVuy4vu
S3iD6CnMHM+FuqqyF/oEl7DsUNNDu6VdyLpx9/Rb10X8h4amVKtkJ7raN//z
Au8CPtf81Y72DTsqcu1l0KNbwL/nl03ZrrGjLZra/Yqz81jCX6nHVpodxUgl
3WWuncee9T3pi8/ZENVVT77cax6/QENKKXGsiI820Veocw7LJ7brkaKZ0SOj
UMVK2Vm8xHRcreUzEUl5WIfE0szil6KX60+FElFFrGKPS/cM3koNn+c9RUQT
A71BpLAZHNHBsh3Rw4CQx8GWwIk/WFmolod2hR7Nxfa4Hs3+jQt4xdT5tOmQ
8eDeV3V7prBNLdlgiZ6ATtpJX4K1SXz4wL3kiNRtMJwQ43rXNIkTxGUthg5t
g+4cj0+61yReWROefGG3BWoEmmMBdRNY83q59c36DRAX7ehVchrHq1E1aZ7v
14CU8S0qF43ju1Bfr2S+BkIy9Tpiu8fxDBRlZqytAu8BnMNeOYYdlRTdE7VX
gRW99JzkGMNTI8M2fd+X4e9Ff9bUohG8y4PnaSHPEiwMe+PdoSM4d/+l3ojP
izBH8fCIsBrBUtqRHXyuizDlSunyYRjBFUZxfcfqF6D/9pkM0/PD2EPVWncp
dB7qUiU1mf/9wjyObt26xjOgghN/TAX3469vzc6Eto+CACv9ZIpSP3Z7NjTd
cWkUNs2d1s8O9eHdT/lNL8yMQPWCpnA59GGbunsPadhGwESqn/xg/SceEzmf
8cN8CNweis7Iu3XjF7zlVcpm/WDaE7o9INKNO+15X4fF9IGq9DxnTFMXJvbX
Khl29sIW9ZPShlwXJutK7mS//BMilsg+jaOdmHm+hSstugteWmbSO1u2Y7b6
BbUlpzaIyGHjEWNux5LPHnfRtrWC298b0h2lbVj7UTCXv0YrqEXpGWrxtGHH
ZXvLYq4W+PJ5PIqtpQWfPaZhb/W5CXI5Tqd9ut2CnWzLLZRKGuGhVWnhDYUW
HNAyfO9XfgOYLod29D34jlOS9wVW5X6FLyamKlYPm/GHvxn0KYM18PDPngvV
U034XTTltcJ6NZje/3trr34TLgxqjYzlq4bhsthPG7SNOMUobXHa9jMQxLtP
Jt/8ilMNjyVYOFRCbflLV4bOOnw1xNh8drICIs18nzgr1WFZcu5dRc9yEAoT
7NKa+YLj1s6IV2eWgvqctW2/bTWWy7l6m9u/CJzKMia9q6twSLryMvFMIaQE
T7vulKzCXZuj3scV3gIdv4+f7tgnXJ0yr3plx2tQGca0/XqfsMrDYr+yf3lw
9RUxzDubimPUdX7kEXLh2V0ZebOWSszf+LGJrJMFW7zvVEOffMRHC/McZG5n
ADn/qG65SQW2OGcnGN78AvZ22FiLdX7AuQXXAo8apsJjh98OpnGl2N0p2f6N
eRIsb/p43Td/j7ky7G6aRDwDqtTTqD89xXgupEhE1zYGJMvFk0STirCcokbR
I+ITCDcuyDGxLsSBhQVjcilRMDusVRIi8hbbr+6uzPB5ANlzsXev4zeYXiXr
d2TqfXDjL0zqPvIKW1+77DHJEQyHdZpKoDoXu8UfNy6uDwT6axPNmXo52Nf3
LXEg9RY0R9NNsHzNxCFFssIq4AXxFSI0HifSMUPvyi/n6+5AHlUX6Gp6jufG
VXNZfRzhvFCuvd/zJFy2LP9nS9kWppwH4/Uz4/CPujj+K4csIADzNHDnPsFM
5P27jE1Pg7h4wvon6weY2UMr1PvhETCoIV60oARhPxeFWxeu7AVqWhNbQ5Uz
7mKNCcytogf99G1qlrwpsDcc+HdwV5t28Av78dKVm1A9GxeTpCYMgq/1OHQ9
QmBKvpLCmaIKvgzOHWbKjyDiZc9x2hR9GCtSSQ/b/xSsenXGCcxmYEImuH+U
S4AhztW3R1gvAZWzXnteMhX8nqyf1P1oD7EDBiFPOF/A+kKOLlO8CzS+U3De
G5kBB54FNeo1XwfaSC7TLyzZYJpDL+k4ehPUrqwevhT2Emay+uRdHgeAq2af
2DoxHwIMQ9xkHe5AFtdnppjg1wAf9MVZ2++By422FZ6gAvhAUpG/GBYGGSdL
+wu2CuH3pL5Y3uQjgFK5Vn+tYsCcgTKbStHQI5FcY+hXAi5FJy3vpz8Fzn9B
+SNr78HOKeuo7kIC5Nkvpb5V+wB5d5TWvFqSQa/VPjrAuwzsmeX/zDk+B/+X
J3z5/lbAuc5XHAey04Fvd6XzqFIlKF1I/aR+OROKAw9cLvTAQEiwDBvYlw1/
85j3SK1SgWymbLG9lQvyd2eZqTeqIOdCEUGf+hasNLiYXolXQ4yGbKMmTRFE
LKowJHyrhvMq3IySRsUwYxuwfV32Czh4GTR8Y3gPhbpsS9J9dVAgevBh5HoF
DG8cmOcO/wo2X43bRaIrgbvEdIZGtR48atyPnRGkwg3JpImfjxpAc+8hCZ1v
n0CNKN8XpdsMQ5G+t7pu1oBD5akev/lmSNDrt5px+wIJXh4/HFK+wcfwjb/+
LrUQsNg7Ieb3HQxLrxoz+36FAds9w/86WsAtZzvlR2sTvNAt+vEmrB2CZ6LN
X9S0QZnosXNSg+2A9wkw3nJuh7aNzvYklQ5QKvJ/zMnXAfQl6y1hwx1Q/qhX
3eNGJ1yR1Gm01foBZ2PXujjOdIMMsYXKO98N6Q0Fp4sfDAAaIkPk8R4gvb9n
82r/IFyoXPpIn9ID4XlptAMJgxDuxVc+b/gTXvtnxljf+AW/xy6WNGT0glZt
70Dt4WF4Uzvz8rb5AFyd3cF1hnEc+m3Y/Pe/HIB3MyKD3gHjwL4sf3pgbQAM
XSO6vy2Pg8oT5VupRoOAltzOcE1PQAzVXWx7ZhDs2S6ZTfyagjPCv50rDw5B
jl/nq3qmWZi4eus8j8UQ6D66juijZyGwmPmIy50hePqk+LYqxxwUnJDlFmkb
AvKkAo1T0hyw+9qX+XsOQ2yKCvvGx3mo7xwkar0fgZvST06XCi8BWdxtLmZg
BNzKM/xsnJZgzXm7+zfjKOx4NKydXL4EMgwir5LMR0Hy3+i9Ecu/cF/J0mRj
7b+f7NoUTkhf/o+jI7Vccxz2FPl4pRmvwUeDerXDnyfh7K+0OlGBbZg5pFy1
+GcSrg36ue0M3gYR8RSjV/xTQD00YFoysw0B6+5kUfcpiJ5PcmCxJSCUxx9B
FJ0GjwwJk+faNKia1WGg1f83sIr+ao0j0qH6b4wh19RnocRF6N7HbiJaL3fn
lLwyCzJnb6dN8jMiuZyfCf2PZqFiUNLK1YIRPQh88+bMxCzobGvl3+9lRFnx
eb8TT8xB9ZGE99MjTOiqgQnPnfU5yOqlvRVEZEHTuS8cTpn/5xEOMcXDERxo
uecqbY3zAqy3fggd6uRABJb9iRp3F4C7Nqo/kZMT8Vwrb5R5vQC2m2bpHpac
SEe+fT8d/SL4n7NzkVrkRPF5DMvv3yxCTFkoc7bcLqSbf/WOGONfuGo4Z8Fa
xo2SXykkLpWsQFroYSuKhQByYeULW/u6AoWMisfWQwSQ9jUa762+FWBfy6YW
Fgmgfpn2s0zEVchX5HCNYRNEohk+zELnVuE+TcNLgSpBlJFQ7XN0eRXesq3G
Kh4SRvn3LcyfqKzD8CyXTN1/Pl9xOWT3gfcbEHBoNiXIRAJ1c/a1jTZugC33
i+c1bhJoGSs9SRzagMtb+8tIkRLogMgvdkb2Tchf7FXm+SqB0ns0mPrtNsHb
9pY+K9qDwk3m1x/s2oLJ8/UTQoqSyPyY1eC48zaoxxSwfZeSRr7czzqMd9Gg
cIuUCf+z8qjxe7tuawIdcjl9Q0SOXhG5N6hKRfEQkdH1Vv7UfhWU8U13t30d
E+rja5VH9ZooIv99DuNJFlQw0rr3k9cRRBPdblDFwI7Gd/NQBEWPId6XebUZ
+pxIhstvZ99PfdSZHSjBELoTuf06NHLu+0lkmScX4jG0Czl5GcwGvz+NNBMZ
NWokudEJz4VX3IwmaDjqw/Ke4N3IM87R2LLIDBVL3J4W6+VByXr33EcDzNFg
urcivTAfIquvTLgdsUStMscCF2/yoyHfQQ8ZRxtESjgmWvdRAAld22SL/3wJ
xeZeWFPfEES0JSVOrJZk1IZ1ukvNhNGk2lqgkrwduvbJhkU4XgTFM9FKM85d
QeTU7tiKZBEkVWNwgW/1CrLwNxW3ShdBGzvpGeUJ9khf3VA98bUI8rf63m7K
aY/2vD1E4a8RQT+Ka9XLDtij3uesVbsXRNCCx0HZRnd7dDKwzJf9JAlV7ZlP
Zv1rj47aHCK+PkNCaCpc22jTHh3WLHhsdJ6E6FCcRRQDBcmsZuZEkEmInMTI
wMdDQfRujzuZfUjIh++4hIYqBX28eFWRMYuE2EWO3KvzoaBireGPWXkkRDtB
1yd6h4LyBW0M9N6SkLaOeoFvOAUl/DC5dK+ChCKy/9UpJlKQlzFE0rWRUNCh
gariCgpy3lfGn95FQgVBKit8NRRkx3IoU6efhGRsCFkBTRR0tlauImiShP7U
Tt841U9BBpmZx8VmSeiwGVtc6RgFobuibdQlEvrukaa0Z5aCVC8n2lxaJ6F8
0ZwTj1co6P96CPr/HvI/WWxT9A==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{-8, 8}, {0., 191.99998432653092`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.680818855957831*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"g", "[", "x_", "]"}], ":=",
RowBox[{"x", "-",
FractionBox[
RowBox[{
SuperscriptBox["x", "3"], "-", "5"}],
RowBox[{"3", "*",
SuperscriptBox["x", "2"]}]]}]}]], "Input",
CellChangeTimes->{{3.680818873226818*^9, 3.6808189137401357`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Function", "[",
RowBox[{"x", ",",
RowBox[{"x", "-",
FractionBox[
RowBox[{
SuperscriptBox["x", "3"], "-", "5"}],
RowBox[{"3", " ",
SuperscriptBox["x", "2"]}]]}]}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
RowBox[{"Function", "[",
RowBox[{"x", ",",
RowBox[{"x", "-",
FractionBox[
RowBox[{
SuperscriptBox["x", "3"], "-", "5"}],
RowBox[{"3", " ",
SuperscriptBox["x", "2"]}]]}]}], "]"}]], "Output",
CellChangeTimes->{3.6808189238027115`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Function", "[",
RowBox[{"x", ",",
RowBox[{"x", "-",
FractionBox[
RowBox[{
SuperscriptBox["x", "3"], "-", "5"}],
RowBox[{"3", " ",
SuperscriptBox["x", "2"]}]]}]}], "]"}], "[", "\[FormalX]", "]"}],
",",
RowBox[{"{",
RowBox[{"\[FormalX]", ",",
RowBox[{"-", "8"}], ",", "8"}], "}"}]}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVk2s81PkegMe1IUUxGM0aIbeKE6Wb9v9DpT0hIULl0q5CNZOsS9tGrUo3
tKsiIywdl9Vluyrl+3NrpEk2GsMYxmB2jMFg3J1x9rx4Ps/L59WzOoLh+4Mq
iUTK/If/254wlC4u0rHjPmlu+TYK9o+2Tpudo2PesqCiPZsp+OztLVYTk3R8
ZX/rf8ROFMweCo4QD9Hxe6aw0Hw9BYdl53dy2um4WmB4/B6dgm+N2XzMeUzH
nPC3jlfVKVhRtL3CKZSOXfOrHx1tNsBvyOGnjlWb4ptB7mVLIwxw8ifuUE34
N7ggjcPpidfHgw+oRptpNHwoLip86N5KbNezR0tXYIIrVW3aBLUrcLF+kaLj
IhU7Y0raWLsergtpugmEMb6Q6NxgOqOLafk0s+xeQ5yCnso/U5fjve4hSa1X
KbhRr6te200H0+cjU2y/M8Ar34mfplzRxusf5aXEDv/TYTpOWhWTsTCu0J5b
ugKzXRPnS7s0cRTrVhErWg9HX5OJvxpr4IPngywqzJdjji65J9NKDdsM2Yb4
31+KxzsvnrPdq4JjvH0uifrI2Jal/1/WKSUEn9m3w9lZE/NfimVLbebgN5D4
wEs1/BiiC5v6J4FQ5QXYq6hgiuakwe4GOYitj0j0pkm4qEil/N0TOaR79SdN
yEi4O9wjx4Ylh+5sOauSR8IyT7YOL1YO5x20+tyekHCo7FBPDl0Obw9tYwSG
krCylx1JHR6BuFNbdVV+WoSWJo+6aEcZ1L/e5fg+chGYsu70PzRkYKDhe+C6
7yJ4/rGj5wNvCJ7lRudS7BYhpfRiSd75IRhvzLW261CCjddEw91GKTAslITf
ZiUI3+XBhQODEM2rZT6YWID0ipMv3XzEcLI1vO61YAG+5N4VupqIgdlMMmxm
L0DYjlcHyf0DkFD/bdVU7gIsmLuclcQPQOqTNxp7di5Aqi+3tzenH+6nPb0n
zZoH0YPrWvptImjd8nu9g/McMAMq2u2tu4Hr5Gq002wOKr0/lMjKBNBpL4w6
qD0HKerl51TWCUBoaap7oXsWaEtUXaztu2BE717Ql8uz0HY9w8rcrhPIg7dG
4tpn4PnFiPMVyq/gknPB+E3iNDSOTbvW6TSBV3DG3Y1HpyElQXFkU18jHFmV
Z/jYaxrCcgPtK16xITmv0qDYfBokP5rsvxbcALWFo3rpnCl4QvlLseEKBo/y
w1oRZlMQNsMqnGotg4MxMWld2lOQctO3j59fDMfXJS0JnJyElNlJTnTdfbj2
KEvDs2kSSMp3srsmvwDn6UcV57hJKIjWV5JHCwjfqq1zWo0KaPmdWNVCAHH0
nEdS6lMFJH5xGtxkUkPE7Tgwo2QpoDTLtLP6bi1xG5hTE6cVYFwgzaxkNRC8
upJxwSoFNIb+eKbj80fiMIcy9CdjAtQTnTMs4tqI44IxfpDROAjpwaJ12b3E
M0aXxm61cdhWGFZqqScilCpsB8fRMVC1LDcNuCoisqxYv2izx2BGw9TvXHIf
gRm711bFj4HbadWjiT8NEMaquWdpXDnUGpCdX74aJI5mXSom18rBPI1+y263
lHhkxWxWPJSD5I601JUrJXbu3WX+6ZIcAr58mkmYHyKYWaMfft4kh0iOcfho
8AiR6ZXmWG07Cp6cKO8lVWOEVezhy3dURuGSftiPJ1eME2/vOHae6hgBsxMH
zowdHyckPV0X6FdHgBl7/Wr0qgkCxW74K0UyDMElG4aa0xUE947mmiA8DGXB
0pyWEQVxooqfuCF7GAyZ2ecsfCaJbPXLZiKPYUDrGaIOwylCfqeT4V4iA23s
fTH0xTRxuepx3apkGVioRQnBbIagCVONFAEyeB9pJnpyc4bYY+sAxZoySIkK
aD9+YpYoqPpluWbkENAY/e7bv50n9gnXPWy0lEJz5sr0Zy6LhOf31mHE7CC8
FcT/fPuvReLfktX6Lz8NwvuE5+LMjSS0U26YVBQ/CCHkhhjXFhLaQlLZdb5R
Ag05r9N2UVXRptT5aQVLAsXB+j5MhipyJE+Vx5yWQJtfzSY3tiparzekF2Qi
gS3PFGFLz6khc7OvXU4n/gblCt3Z3Hl1RC/+nFGO/oa4lW0ffgjTQDSbJrfV
lL/BxUyryY2tgYz+BaXLq8Vwa2Oha3yuJtJBZXGDumJY+zzT5UEoGWnVF1mH
/fN13cs3c2IuGWnuud/JrRyALUbMDxwfLUTy+Q3Vhw9AdHyaJd9TG02G/qyT
/6wf3MO1h389roPG+xKAktYPkQRVkTytg+THYmNvHOoHRU6YgHt1GZIyjvGS
NPrBkzLN3/p6OepO3l/sH9gH1D0T7zcU6SG+mmfgx7V9IF8ZxdCf00O8K7u1
3Uh9cIXaJXXyW4FaM7YzHcpE0Hg6vPqSzkrUmL/GRXu+F16fdaEq8vRRg4XZ
aMrnXtjw/HOdl5YBqi0x+X26qBe2a7gZ/JFggN491iUPePaCToRcIj1MQW+c
tKtCVvdCs/vZ0OVcCqp8pX7qy6QQxEc/Z7zab4iewmwr3BfC2VF/oYO/EXrs
rrjsfEYIzPi9W7z5RqiCPbL1oYcQLvsZzmRGGiOvfDaxqbcHaLyENduuUZEz
5LZLU7thevuphtKlNGSioz5436kblmTYur54SEP/PXhizlckAKq3WlK7/zeo
ftzlmypCAKblqRTXZ6aolHhgzxjpgqk/TwaoxtDRjRvLkEVeF3hc1HobaWCG
/Ky6I67P8YG+wu/bZr4Zcj6zO44o40NISyCFtXM1MsGPLk0E8kHl+5AxzT9X
I1FQcmnIi07QsKS6/3DbHDFvmo2sZXYAJ+teydtblsi/M22xx7QDvmZH8/i0
NWiz9Zhe1icekEesVfc+XIOUuMZpwY4Hftt057f2WCHRMrtdTzraQel6ZlfA
BWvUEPxrwPdp7fDCHX+3YGuDbigikjgDXNg3HlNzKNMWMV0/XkvJ4gKruiap
z9sO+aU7sTa6c0HNhcq6SVmLTGzUgVXwFVw9qVPb3q1DyrgTLT77vgIJHRN4
5q9Hopq2XnVlG2w9csit8Lo9KriSd+B8bRsgdqdH304H9D9kGrXn
"]], LineBox[CompressedData["
1:eJwVlXk81N0Xx2eQfWeGUsaeUlIh63NOiuwtKirJKEUoekQkVFJaZKnUKJGl
rC0PpUIiRLut7EJk38Yy8x3jN78/7uu+3v+ce8/n87nnqnqc3OXJRyKR+nnr
/3s+9435R7EmwJrWbb1b12EDp7nxvmETFIg+MbL6qIsCRewfMb1NEBmRFd4z
vQaXx1/fQTJphtYatfTspWtQ30/5W1BcM5R+WUUFGx301LT4fNj8Jxy7SEpI
rFyF4eRG29bEn9Ba2R1jJ7EK73R41u4Y+gkZd2Zm3rtpY/XtmGrzpF9AKtMW
MFVYidqCP8oVJluAKqfiS23UQOzxgNhtrdBWrKgKOzVwXxmzVCClFfh8mkx9
G9TxapDi20nbNhiw/Pf5zz9q+GhXjrFXWhu40d8+TDuthm91zYo759rgkNTM
jWgRNRzpP1T0KaMdyntN+9rNVFGgcnKjBdEOH66Fq0+3qeCKhxdfFO/sgG5f
63y/cBV0dH78NJPbAafHF4UH79Hwac1YdoRLF5Tu9v+8oLgCO90kzq3L7gKy
3hFZr5vLUXJWZ0cXqwuc6vwl5kWWo2GC/tmHDt2gZsqh9Ysq4a3yANXFsW4Y
u2SUNLZpKa4RJ4s5K/yGq1o3aT6fFLHSOY5ZAL9hUoskM0NXxKmxghq3uN9Q
sU2t8n2SAu5cMeJXtr4HBrVvW5xWp+Jfr7PO1P09oKfO3H71MwUjC0U3n7jQ
A+crs3WGgyn4zG6VvHJDD/zgqslYNMmjZOjRN+cCe8GEJd1g/0QOs6pm0pvu
94KwmLpdBV0OzWUu3Vhb1QuG9rZ09nI59H2S7t5B6YOErEid0LuyWNfcLWj+
qg8+3LMysX8kgx5q/hO3uvogMijJ/6iXDLL8FltGhP5A2NNHnV3rZFB7iXL+
fZc/kC6yUaWmQhovbzzgxGH9gS9VAf1FY1KoHDFktlutH/aHKIa+i5XCl3Uh
Wnm2/fBBnsNg6klhP/0u60ByP5j4tXenn5XErXFND9+aDcCSTIpQlLYEtrcd
iZHzHABGali40y9x/Hcl85TPjQGwTkhU6I4Rx0dlslZKnQNwyliojzwlhqTR
7SOhEX/Bzk5is0GTKJba1BmZVAzCinUy0m2dwjhmoF85PToI4VupnPlUYVRW
S3HIXzoEAvc9jwUcEcZwdoCHSsAQpCTWKjqOCyHmLr0uqDIMmU/8Bb/ICaF/
0kVqud0wNLBleuq7BDHt4mhqSPAwrNL6r28qTxD5XN8XjXwdhktfXas8bQXx
g7h3V/25Edha1QT0+CXInK/3vp49Ag1aE0LnPZeg5h8zpmXTCDywIfVeMVmC
0aXSIq/XjAKfaMBa0wEB3HaieMPDtlHY3LBbN9lWAOu+CUX7GI8D1XGObmnA
j+y3AdKanuNwKO7v+icUflz9pI3RGTcOJlJ6JnmzfHgt8unTnX/H4fU9hY1X
3/Bh1t3ckWS7CYiKL46ysOHDstju52foE/Dp3UktJ10+bI6iBO8JngCTzs+l
w3J8KBQQQZZKn4DQa7352d1k9LJxol5gT4CHQTFDMpKMkXClzU16Et5FqHrL
e5PxrkFpqqnWJAhLduTd2EXGWtWVOjM7J8H5jMr5H1pkXM1mg1f2JARHQR+9
kYTDOY+8HV2mYMeEQ+zwZhLOtnrxVflNQUnbpS+R60lIEluXbHpxCsyWHWw5
pkpCqs/bz9oFU8BJMwjT5COhhU7jOn6BaagI3xpxMnYRHA4wPoYsnYYvBR9G
j51aBJdr7vQJ3WkQtpRbNbZ3EfyGRxI69k2Dgd8vY4bqItzNXTL76uk0yB+b
pKwr5UJ626dY3app+Pi99pdTJhcKxBJWZrZOQ9hrCxrzBhcqfZT3JSxhwsRj
s7kUdy6M6Wwq8T3AhKIamVNHxbiwNc/rgqrQDNTvMt+jdnoBtrfrKt1dPgMD
fmPM5UcWYL/4zH+SG2ag5PHj+CCnBTjpe/4P4ToDjKOV33DjAjDWMKybX8yA
qPchZ5E5DmS6uv+2/zgDUW8c0xr+cuDZda3Qyo4ZkGvMKZls5UDVyIvcZ8Kz
EF8oslOjnAMTeZ8kr7nNwo4Ta7IwlgNEe/xjcuAs5HiN8V++wAFBCRc8EzML
R+hVDxWCOaDk1xfgWTgLUvnd6+XoHLBau9AIonPACuc332vEgZ0HK/1e0uYg
SOVnz3ddDrjeiBFcazAH64n8yzc0OXBqlGK0zH0ORFsDhGrlOPAgXzeZWTQH
Z00mXddNE3BCXDGGVTsHzZdH81RGCPjHhxzM7ZiDhh7mP5Z/COjUbtwlLDgP
L2Y9IjR/EVBwuRQlls3DUPbXrq4fBET0Z+nK6s7DMX79/rpPBKhkhIgu3zsP
iT46R/XKCZjgOzyvcnweDj8ty8p+Q8B7un2/Zvg8CAkbKO0sIsCDRqtYlzUP
oY5N1tq5BGQwPoRsmZ2H6WFyy8BdAgJZ+cesRVlgZxtdW3GLAEuXpD0Oyiyo
zg48WxNHQD/l+HpnKxbEZabI2ccQ8DLQiea6nwUGxMxs3SUCLjeYSdBPsMD8
QdvtgAsEaMdLDR6/wwIXDQpVP4yA+fH55pM5LBjvIwtsDyGg1rHnQ2AZC7Yo
PKi+GUQAI//Ti5B6FqxWrfw78y8Bx8WLUsP7WbDDT34uMoAAE5+U2ItsFnhv
HY3QO0mAWN3lsCuSbFCvPygn4EdA3uX9LgmGbGgPSn5E8SYgrH+LVZItG+q+
V1fvOkaAg+Va/ftubFibuMnqhScByhlUtbRTbLB1lnq98QgBY3wk6axoNuRT
5oqbPQgoow8u5DDYUL5Z8TeDTsDN8vrhpwVsuCFC/RrhToA7raSlsIINJcWC
ypcOEaAXnlnzupkNav/4+ee4EUDqiC0qG2LDcP2Go+MHCfhheia9ksuGoorU
NCceP2LQ4z/KEvDVaX91sysBp1i2EV+0CKj/ujfkDI8tXPT96k14dTLb3I14
LPdqxYGfjgScLwzSoPK4jyJk0867J3/OvK8MjwsDJwx/83QcDT/Zt4rHUQ0t
Gv1XCUiSUzU8xOM9Gyplh1MI+Nx3SfI5j7Xi80gTLwhY1r5Fica7z+z47TFm
NQHrTVaJZfO42jGindVKwC/GylhHXj9J+V513DEey2zfI8Xr10t8VzE/Pwcc
3Wtlh3ls5GOaJazAga7NTSG/efoI12ncktDhwJYf7/+Z4unXoi15QRY4kME/
RF1xmICcy3MnFZw4sN3kWTGdp39of/fB5cc4YDgU0vaO54+tZZ2d6lkONLrk
btrE808p4z9jrZscGPVLj67xIqCEHk3Re8WBNd/WDaz35dWX7mj485kD803j
0foneP2825iQ3MOBcH0FQyd/nj/KvyWFJBcgyqH7395AXh6+bPpSor4AHyR0
3XYH8/IWFnvtlPECeLvrSXXz8pneaircyZtTVytvx1hFEFAek1CdGMqbW2nj
r1R4+W43GoyyiVuApYW/g+R5+acm3SEXvV2AwLorYduuEXDVaZJ9TZYLa0z2
v23gva/HfNavN2tz4fhjk7On7hPw4XlK8Jw5F66470vQTiWAK2XP9PDmQv/g
tpKWxwQEfM4aNS7ngnRv/bB1MQEulq7dA36LUF1AZWl0EHCa+SLlwcVFcHd2
+KHUQ0BCushBp3uLsPkZmGkN8Hwmv2op+7AI/XHvmYGTvHnRdWWwToKEloVh
yBTkQGJyb0/aERIa+dBmHQ04ECp/r2m7LBlD4w44maRwwId/b1fAcjKyzy25
8S2DN++mZAcTef+WGi1CNCCXA/D9OuenCRmPfss9+KuYAwLXI9XdD5PxUej7
HQaNHIjl9wrwLyTjHd8T36QlFiB9ylAifi8fhstfCE2NXoDP3xu31jP48bFX
mNrFW1x46brf6H0GP1osFdC3fMCFtL9dOs8K+JG7uVpSMosLQaRh2dgKftxw
P2Twv1dcUNEj/7YZ4sfjK6JKHdu4cPrm2nPvjQXQyuUao0h9EZQdo4ue/RLA
Cj+KEbN4EQI+bdK6SRXEBrKSUVAICTO+baUc/SiM/El7FLcNkvF63qsnQvZi
6GhmOtXuzI/kxEabyiWSqGA3a6g/K4AK2bk1GdbSeERg4frKKEFsfhypvuSK
DGqcY9GKZYTxQO7q6FM9spjRUxMjUyOCZslCplWa8tjZaB0cf1gMe2++ntWI
ouDNK237V2lJYKF6xLBqOxVzHQ0X9vVKYnd68AaBFYpY26bMcLSQxnpty8jp
M0sxC7rKPDRlkMawVPlYugwLWYd3i7Jl8E7OPpYxRwndPXvOC3ySxYZ3Fi3F
e1ZgCfPAM8MCOfR57ya24q4y9hbqat2+II8eD1vulDxQxnlPcTXbaHncf263
mmu6MvonfFNfjJFHa2Nb4+QCZYymzBh5x8ujxnODY0urlFE7e2u2eao8tqeK
V1KmlHH55OaUgVJ5tI98EyppT0Nh27YSYMnjFjcDwYKdNLwrvMtvhiOPJmbP
4h2caWj4j456LomC2vOZT6570FAwbSaFKkxBAf/4ZtEQGmYJRjSPUilYeshr
g1AWDX9FUSwe6FOw0Ly3NCuXhiNDw1ZORhTMU3KzsXpOw3eMvztEzCjI+Onk
fqmEhtZoFXh6CwWDtvMi10DDlxvXzjvsoqDf2jdL03/RsIL+XVNgLwWPiBlk
WnTScA03zOXNPgruqlldcn6QhnE7+j5r0Slok5m5TXWchvdnkiQ7jlAQL6o0
lDNpqDxgtSfRi4Kb6Mlu7mwaumWMptr4UlAXqEOLi7zznl6ZXDxJwf8Bu7Xi
Yw==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{-8, 8}, {-5.307291446853741, 15.634546513992632`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.680818925460806*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "[", "1", "]"}]], "Input",
CellChangeTimes->{{3.6808189320931854`*^9, 3.6808189344363194`*^9}}],
Cell[BoxData[
FractionBox["7", "3"]], "Output",
CellChangeTimes->{3.680818944341886*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
FractionBox["7", "3"], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["2.3333333333333335`"], "Output",
CellChangeTimes->{3.680818948244109*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NumberForm", "[",
RowBox[{"2.3333333333333335`", ",", "16"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
TagBox[
InterpretationBox["\<\"2.333333333333333\"\>",
2.3333333333333335`,
AutoDelete->True],
NumberForm[#, 16]& ]], "Output",
CellChangeTimes->{3.680818950285226*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NumberForm", "[",
RowBox[{"2.3333333333333335`", ",", "16"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
TagBox[
InterpretationBox["\<\"2.333333333333333\"\>",
2.3333333333333335`,
AutoDelete->True],
NumberForm[#, 16]& ]], "Output",
CellChangeTimes->{3.6808189530343833`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.680818959167734*^9, 3.680818965675106*^9}}],
Cell[BoxData["1.8616780045351475`"], "Output",
CellChangeTimes->{3.6808189706683917`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NumberForm", "[",
RowBox[{"1.8616780045351475`", ",", "16"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
TagBox[
InterpretationBox["\<\"1.861678004535148\"\>",
1.8616780045351475`,
AutoDelete->True],
NumberForm[#, 16]& ]], "Output",
CellChangeTimes->{3.6808189736695633`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NumberForm", "[",
RowBox[{"1.8616780045351475`", ",", "16"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
TagBox[
InterpretationBox["\<\"1.861678004535148\"\>",
1.8616780045351475`,
AutoDelete->True],
NumberForm[#, 16]& ]], "Output",
CellChangeTimes->{3.6808189786698494`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "[", "%", "]"}]], "Input"],
Cell[BoxData["1.722001880058607`"], "Output",
CellChangeTimes->{3.6808189993160305`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NumberForm", "[",
RowBox[{"1.722001880058607`", ",", "16"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
TagBox[
InterpretationBox["\<\"1.722001880058607\"\>",
1.722001880058607,
AutoDelete->True],
NumberForm[#, 16]& ]], "Output",
CellChangeTimes->{3.680819002854233*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NumberForm", "[",
RowBox[{"1.722001880058607`", ",", "16"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
TagBox[
InterpretationBox["\<\"1.722001880058607\"\>",
1.722001880058607,
AutoDelete->True],
NumberForm[#, 16]& ]], "Output",
CellChangeTimes->{3.6808190045013266`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "[", "1.722001880058607", "]"}]], "Input",
CellChangeTimes->{{3.680819037048188*^9, 3.6808190421704817`*^9}}],
Cell[BoxData["1.7100597366002945`"], "Output",
CellChangeTimes->{3.6808190472787733`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NumberForm", "[",
RowBox[{"1.7100597366002945`", ",", "16"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
TagBox[
InterpretationBox["\<\"1.710059736600295\"\>",
1.7100597366002945`,
AutoDelete->True],
NumberForm[#, 16]& ]], "Output",
CellChangeTimes->{3.6808190498099184`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.6808190521510525`*^9, 3.6808190542701735`*^9}}],
Cell[BoxData["1.709975950782189`"], "Output",
CellChangeTimes->{3.680819060709542*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NumberForm", "[",
RowBox[{"1.709975950782189`", ",", "16"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
TagBox[
InterpretationBox["\<\"1.709975950782189\"\>",
1.709975950782189,
AutoDelete->True],
NumberForm[#, 16]& ]], "Output",
CellChangeTimes->{3.6808190730422473`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "[", "%", "]"}]], "Input"],
Cell[BoxData["1.709975946676697`"], "Output",
CellChangeTimes->{3.6808190800886507`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NumberForm", "[",
RowBox[{"1.709975946676697`", ",", "16"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
TagBox[
InterpretationBox["\<\"1.709975946676697\"\>",
1.709975946676697,
AutoDelete->True],
NumberForm[#, 16]& ]], "Output",
CellChangeTimes->{3.680819081874752*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "[", "%", "]"}]], "Input"],
Cell[BoxData["1.709975946676697`"], "Output",
CellChangeTimes->{3.680819093510418*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "[", "%", "]"}]], "Input"],
Cell[BoxData["1.709975946676697`"], "Output",
CellChangeTimes->{3.6808190955015316`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NumberForm", "[",
RowBox[{"1.709975946676697`", ",", "16"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
TagBox[