Skip to content

Latest commit

 

History

History
60 lines (48 loc) · 2.76 KB

README.md

File metadata and controls

60 lines (48 loc) · 2.76 KB

Mini projects

Churn prediction

Binary Classification Classic ML Tabular
Notebook
The task is to predict churn of telecom company customers.
Implementation includes:

  • Exploratory Data Analysis
    • Missing Values Imputation
    • Categorical Columns Encoding
    • Data Normalization
  • Modeling:
    • Baseline: SimpleImputer + StandardScaler + OneHotEncoder + Logistic regression + GridSearchCV
    • Final: CatBoostClassifier + Hyperparameter Search (Optuna)

Salary prediction

Regression DL NLP
Notebook
The task is to predict salary based on the different text and categorical features.
Implementation includes:

  • Exploratory Data Analysis
    • Categorical Columns Encoding
    • Target transformation
  • Modeling:
    • Baseline: Custom PyTorch dataset + Custom Transforms + Fusion model (Title Encoder + Description Encoder + Categorical Encoder)
    • Improved model: In progress
  • Explaining model predictions: In progress

Simpsons classification

Multiclass classification DL CV Transfer Learning
Notebook
The task is to build classifier using ConvNets to classify images from Simpsons series onto 42 classes.
Implementation includes:

  • Data preparation:
    • Label Encoding
  • Modeling:
    • Baseline: Custom PyTorch dataset + Torchvision Transforms + Finetuning vgg16_bn
    • Improved model: In progress

Matching subscribers

Multiclass classification Classic ML Tabular Feature Engineering
Notebook
The task is to match customers of telecom company based on their characteristics.
Implementation includes:

  • Exploratory Data Analysis
  • Modeling:
    • Baseline: TF-IDF + LogisticRegression + GridSearch
    • Final: In progress
  • Explaining model predictions: ELI5